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Abstract. We consider the problem of minimizing a polynomial over a semialge-
braic set defined by polynomial equations and inequalities, which is NP-hard in general.
Hierarchies of semidefinite relaxations have been proposed in the literature, involving
positive semidefinite moment matrices and the dual theory of sums of squares of poly-
nomials. We present these hierarchies of approximations and their main properties:
asymptotic/finite convergence, optimality certificate, and extraction of global optimum
solutions. We review the mathematical tools underlying these properties, in particular,
some sums of squares representation results for positive polynomials, some results about
moment matrices (in particular, of Curto and Fialkow), and the algebraic eigenvalue
method for solving zero-dimensional systems of polynomial equations. We try whenever
possible to provide detailed proofs and background.
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1. Introduction. This survey focuses on the following polynomial op-
timization problem: Given polynomials p, g1, . . . , gm ∈ R[x], find

pmin := inf
x∈Rn

p(x) subject to g1(x) ≥ 0, . . . , gm(x) ≥ 0, (1.1)

the infimum of p over the basic closed semialgebraic set

K := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (1.2)

Here R[x] = R[x1, . . . ,xn] denotes the ring of multivariate polynomials in
the n-tuple of variables x = (x1, . . . ,xn). This is a hard, in general non-
convex, optimization problem. The objective of this paper is to survey
relaxations methods for this problem, that are based on relaxing positiv-
ity over K by sums of squares decompositions, and the dual theory of
moments. The polynomial optimization problem arises in numerous appli-
cations. In the rest of the Introduction, we present several instances of this
problem, discuss the scope of the paper, and give some preliminaries about
polynomials and semidefinite programming.
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1.1. The polynomial optimization problem. We introduce sev-
eral instances of problem (1.1).

The unconstrained polynomial minimization problem. This is
the problem

pmin = inf
x∈Rn

p(x), (1.3)

of minimizing a polynomial p over the full space K = Rn. We now men-
tion several problems which can be cast as instances of the unconstrained
polynomial minimization problem.

Testing matrix copositivity. An n×n symmetric matrix M is said
to be copositive if xT Mx ≥ 0 for all x ∈ Rn

+; equivalently, M is copositive
if and only if pmin = 0 in (1.3) for the polynomial p :=

∑n
i,j=1 x2

i x
2
jMij .

Testing whether a matrix is not copositive is an NP-complete problem [94].

The partition problem. The partition problem asks whether a given
sequence a1, . . . , an of positive integer numbers can be partitioned, i.e.,
whether xT a = 0 for some x ∈ {±1}n. Equivalently, the sequence can be
partitioned if pmin = 0 in (1.3) for the polynomial p := (

∑n
i=1 aixi)

2 +∑n
i=1(x

2
i − 1)2. The partition problem is an NP-complete problem [40].

The distance realization problem. Let d = (dij)ij∈E ∈ RE be
a given set of scalars (distances) where E is a given set of pairs ij with
1 ≤ i < j ≤ n. Given an integer k ≥ 1 one says that d is realizable
in Rk if there exist vectors v1, . . . , vn ∈ Rk such that dij = ‖vi − vj‖
for all ij ∈ E. Equivalently, d is realizable in Rk if pmin = 0 for the
polynomial p :=

∑
ij∈E(d2

ij − ∑k
h=1(xih − xjh)2)2 in the variables xih

(i = 1, . . . , n, h = 1, . . . , k). Checking whether d is realizable in Rk is an
NP-complete problem, already for dimension k = 1 (Saxe [123]).

Note that the polynomials involved in the above three instances have
degree 4. Hence the unconstrained polynomial minimization problem is a
hard problem, already for degree 4 polynomials, while it is polynomial time
solvable for degree 2 polynomials (cf. Section 3.2). The problem (1.1) also
contains (0/1) linear programming.

(0/1) Linear programming. Given a matrix A ∈ Rm×n and vectors
b ∈ Rm, c ∈ Rn, the linear programming problem can be formulated as

min cT x s.t. Ax ≤ b,

thus it is of the form (1.1) where the objective function and the constraints
are all linear (degree at most 1) polynomials. As is well known it can
be solved in polynomial time (cf. e.g. [128]). If we add the quadratic
constraints x2

i = xi (i = 1, . . . , n) we obtain the 0/1 linear programming
problem:

min cT x s.t. Ax ≤ b, x2
i = xi ∀i = 1, . . . , n,

well known to be NP-hard.
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The stable set problem. Given a graph G = (V, E), a set S ⊆ V
is said to be stable if ij 6∈ E for all i, j ∈ S. The stable set problem asks
for the maximum cardinality α(G) of a stable set in G. Thus it can be
formulated as

α(G) = max
x∈RV

∑

i∈V

xi s.t. xi + xj ≤ 1 (ij ∈ E), x2
i = xi (i ∈ V ) (1.4)

= max
x∈RV

∑

i∈V

xi s.t. xixj = 0 (ij ∈ E), x2
i − xi = 0 (i ∈ V ). (1.5)

Alternatively, using the theorem of Motzkin-Straus [93], the stability num-
ber α(G) can be formulated via the program

1

α(G)
= min xT (I + AG)x s.t.

∑

i∈V

xi = 1, xi ≥ 0 (i ∈ V ). (1.6)

Using the characterization mentioned above for copositive matrices, one
can derive the following further formulation for α(G)

α(G) = inf t s.t. t(I + AG) − J is copositive, (1.7)

which was introduced in [32] and further studied e.g. in [46] and references
therein. Here, J is the all ones matrix, and AG is the adjacency matrix
of G, defined as the V × V 0/1 symmetric matrix whose (i, j)th entry is 1
precisely when i 6= j ∈ V and ij ∈ E. As computing α(G) is an NP-hard
problem (see, e.g., [40]), we see that problem (1.1) is NP-hard already in the
following two instances: the objective function is linear and the constraints
are quadratic polynomials (cf. (1.5)), or the objective function is quadratic
and the constraints are linear polynomials (cf. (1.6)). We will use the
stable set problem and the following max-cut problem in Section 8.2 to
illustrate the relaxation methods for polynomial problems in the 0/1 (or
±1) case.

The max-cut problem. Let G = (V, E) be a graph and wij ∈ R

(ij ∈ E) be weights assigned to its edges. A cut in G is the set of edges
{ij ∈ E | i ∈ S, j ∈ V \ S} for some S ⊆ V and its weight is the sum
of the weights of its edges. The max-cut problem, which asks for a cut
of maximum weight, is NP-hard [40]. Note that a cut can be encoded
by x ∈ {±1}V by assigning xi = 1 to nodes i ∈ S and xi = −1 to
nodes i ∈ V \ S and the weight of the cut is encoded by the function∑

ij∈E(wij/2)(1−xixj). Therefore the max-cut problem can be formulated
as the polynomial optimization problem

mc(G, w) := max
∑

ij∈E

(wij/2)(1 − xixj) s.t. x2
1 = 1, . . . , x2

n = 1. (1.8)
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1.2. The scope of this paper. As the polynomial optimiza-
tion problem (1.1) is NP-hard, several authors, in particular Lasserre
[65–67], Nesterov [95], Parrilo [103, 104], Parrilo and Sturmfels [107],
Shor [138–141], have proposed to approximate the problem (1.1) by a hi-
erarchy of convex (in fact, semidefinite) relaxations. Such relaxations can
be constructed using representations of nonnegative polynomials as sums
of squares of polynomials and the dual theory of moments. The paradigm
underlying this approach is that, while testing whether a polynomial is
nonnegative is a hard problem, testing whether a polynomial is a sum of
squares of polynomials can be formulated as a semidefinite problem. Now,
efficient algorithms exist for solving semidefinite programs (to any arbitrary
precision). Thus approximations for the infimum of p over a semialgebraic
set K can be computed efficiently. Moreover, under some assumptions on
the set K, asymptotic (sometimes even finite) convergence to pmin can be
proved and one may be able to compute global minimizers of p over K. For
these tasks the interplay between positive polynomials and sums of squares
of polynomials on the one hand, and the dual objects, moment sequences
and matrices on the other hand, plays a significant role. The above is a
rough sketch of the theme of this survey paper. Our objective is to intro-
duce the main theoretical tools and results needed for proving the various
properties of the approximation scheme, in particular about convergence
and extraction of global minimizers. Whenever possible we try to provide
detailed proofs and background.

The link between positive (nonnegative) polynomials and sums of
squares of polynomials is a classic question which goes back to work of
Hilbert at the end of the nineteenth century. As Hilbert himself already re-
alized not every nonnegative polynomial can be written as a sum of squares;
he in fact characterized the cases when this happens (cf. Theorem 3.4).
This was the motivation for Hilbert’s 17th problem, posed in 1900 at the
International Congress of Mathematicians in Paris, asking whether every
nonnegative polynomial can be written as a sum of squares of rational func-
tions. This was later in 1927 answered in the affirmative by E. Artin whose
work lay the foundations for the field of real algebraic geometry. Some
of the milestone results include the Real Nullstellensatz which is the real
analogue of Hilbert’s Nullstellensatz for the complex field, the Positivstel-
lensatz and its refinements by Schmüdgen and by Putinar, which are most
relevant to our optimization problem. We will present a brief exposition
on this topic in Section 3 where, besides some simple basic results about
positive polynomials and sums of squares, we present a proof for Putinar’s
Positivstellensatz.

The study of positive polynomials is intimately linked to the theory of
moments, via the following duality relation: A sequence y ∈ RN

n

is the se-
quence of moments of a nonnegative measure µ on Rn (i.e. yα =

∫
xαµ(dx)

∀α ∈ Nn) if and only if yT p :=
∑

α yαpα ≥ 0 for any nonnegative polyno-
mial p =

∑
α pαxα ∈ R[x]. Characterizing moment sequences is a classical
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problem, relevant to operator theory and several other areas in mathe-
matics (see e.g. [1, 64] and references therein). Indeed, sequences of mo-
ments of nonnegative measures correspond to positive linear functionals
on R[x]; moreover, the linear functionals that are positive on the cone
of sums of squares correspond to the sequences y whose moment matrix
M(y) := (yα+β)α,β∈Nn is positive semidefinite. Curto and Fialkow have
accomplished a systematic study of the truncated moment problem, deal-
ing with sequences of moments up to a given order. We will discuss some
of their results that are most relevant to polynomial optimization in Sec-
tion 5 and refer to [23–26, 38] and further references therein for detailed
information.

Our goal in this survey is to provide a tutorial on the real algebraic
tools and the results from moment theory needed to understand their appli-
cation to polynomial optimization, mostly on an elementary level to make
the topic accessible to non-specialists. We obviously do not pretend to offer
a comprehensive treatment of these areas for which excellent accounts can
be found in the literature and we apologize for all omissions and impreci-
sions. For a more advanced exposition on positivity and sums of squares
and links to the moment problem, we refer in particular to the article by
Scheiderer [125] and Schmüdgen [127] in this volume, to the survey article
by Helton and Putinar [52], and to the monographs by Prestel and Delzell
[114] and by Marshall [87, 90].

1.3. Preliminaries on polynomials and semidefinite programs.
We introduce here some notation and preliminaries about polynomials,
matrices and semidefinite programs. We will introduce further notation
and preliminaries later on in the text when needed.

Polynomials. Throughout, N denotes the set of nonnegative integers
and we set Nn

t := {α ∈ Nn | |α| :=
∑n

i=1 αi ≤ t} for t ∈ N. R[x1, . . . ,xn]
denotes the ring of multivariate polynomials in n variables, often abbrevi-
ated as R[x] where x stands for the n-tuple (x1, . . . ,xn). Throughout we
use the boldfaced letters xi,x,y, z, etc., to denote variables, while the let-
ters xi, x, y, z, . . . stand for real valued scalars or vectors. For α ∈ Nn,
xα denotes the monomial xα1

1 · · ·xαn
n whose degree is |α| :=

∑n
i=1 αi.

Tn := {xα | α ∈ Nn} is the set of all monomials and, for t ∈ N,
Tn

t := {xα | α ∈ Nn
t } is the set of monomials of degree ≤ t. Consider

a polynomial p ∈ R[x], p =
∑

α∈Nn pαxα, where there are only finitely
many nonzero pα’s. When pα 6= 0, pαxα is called a term of p. The degree
of p is deg(p) := max(t | pα 6= 0 for some α ∈ Nn

t ) and throughout we set

dp := ⌈deg(p)/2⌉ for p ∈ R[x]. (1.9)

For the set K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} from (1.2), we set

dK := max(dg1 , . . . , dgm
). (1.10)



SUMS OF SQUARES, MOMENTS AND POLYNOMIAL OPTIMIZATION 7

We let R[x]t denote the set of polynomials of degree ≤ t.

A polynomial p ∈ R[x] is said to be homogeneous (or a form) if all
its terms have the same degree. For a polynomial p ∈ R[x] of degree d,
p =

∑
|α|≤d pαxα, its homogenization is the polynomial p̃ ∈ R[x,xn+1]

defined by p̃ :=
∑

|α|≤d pαxαx
d−|α|
n+1 .

For a polynomial p ∈ R[x], p =
∑

α pαxα, vec(p) := (pα)α∈Nn denotes
its sequence of coefficients in the monomial basis of R[x]; thus vec(p) ∈ R∞,
the subspace of RN

n

consisting of the sequences with finitely many nonzero
coordinates. Throughout the paper we often identify a polynomial p with
its coordinate sequence vec(p) and, for the sake of compactness in the
notation, we often use the letter p instead of vec(p); that is, we use the same
letter p to denote the polynomial p ∈ R[x] and its sequence of coefficients
(pα)α. We will often deal with matrices indexed by Nn or Nn

t . If M is
such a matrix, indexed say by Nn, and f, g ∈ R[x], the notation fT Mg
stands for vec(f)T Mvec(g) =

∑
α,β fαgβMα,β. In particular, we say that

a polynomial f lies in the kernel of M if Mf := Mvec(f) = 0, and KerM
can thus be seen as a subset of R[x]. When deg(p) ≤ t, vec(p) can also be
seen be seen as a vector of RN

n
t , as pα = 0 whenever |α| ≥ t + 1.

For a subset A ⊆ Rn, SpanR(A) := {∑m
j=1 λjaj | aj ∈ A, λj ∈ R}

denotes the linear span of A, and conv(A) := {∑m
j=1 λjaj | aj ∈ A, λj ∈

R+,
∑

j λj = 1} denotes the convex hull of A. Throughout e1, . . . , en denote
the standard unit vectors in Rn, i.e. ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 at
the ith position. Moreover z denotes the complex conjugate of z ∈ C.

Positive semidefinite matrices. For an n×n real symmetric matrix
M , the notation M � 0 means that M is positive semidefinite, i.e. xT Mx ≥
0 for all x ∈ Rn. Here are several further equivalent characterizations:
M � 0 if and only if any of the equivalent properties (1)-(3) holds.

(1) M = V V T for some V ∈ Rn×n; such a decomposition is sometimes
known as a Gram decomposition of M . Here V can be chosen in Rn×r

where r = rankM .
(2) M = (vT

i vj)
n
i,j=1 for some vectors v1, . . . , vn ∈ Rn. Here the vi’s may

be chosen in Rr where r = rankM .
(3) All eigenvalues of M are nonnegative.

The notation M ≻ 0 means that M is positive definite, i.e. M � 0 and
rankM = n (equivalently, all eigenvalues are positive). When M is an
infinite matrix, the notation M � 0 means that every finite principal sub-
matrix of M is positive semidefinite. Symn denotes the set of symmetric
n×n matrices and PSDn the subset of positive semidefinite matrices; PSDn

is a convex cone in Symn. Rn×n is endowed with the usual inner product

〈A, B〉 = Tr(AT B) =

n∑

i,j=1

aijbij
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for two matrices A = (aij), B = (bij) ∈ Rn×n. As is well known, the cone
PSDn is self-dual, since PSDn coincides with its dual cone (PSDn)∗ :=
{A ∈ Symn | 〈A, B〉 ≥ 0 ∀B ∈ PSDn}.

Flat extensions of matrices. The following notion of flat extension
of a matrix will play a central role in the study of moment matrices with
finite atomic measures, in particular, in Section 5.

Definition 1.1. Let X be a symmetric matrix with block form

X =

(
A B

BT C

)
. (1.11)

One says that X is a flat extension of A if rankX = rankA or, equivalently,
if B = AW and C = BT W = WT AW for some matrix W . Obviously, if
X is a flat extension of A, then X � 0 ⇐⇒ A � 0.

We recall for further reference the following basic properties of the
kernel of a positive semidefinite matrix. Recall first that, for M ∈ PSDn

and x ∈ Rn, x ∈ KerM (i.e. Mx = 0) ⇐⇒ xT Mx = 0.

Lemma 1.2. Let X be a symmetric matrix with block form (1.11).

(i) If X � 0 or if rankX = rankA, then x ∈ KerA =⇒
(

x
0

)
∈ KerX.

(ii) If rankX = rankA, then KerX = Ker (A B).

Proof. (i) Ax = 0 =⇒ 0 = xT Ax =
(
xT 0

)
X

(
x
0

)
, which implies

X

(
x
0

)
= 0 if X � 0. If rankX = rankA, then B = AW for some matrix

W and thus BT x = 0, giving X

(
x
0

)
= 0.

(ii) Obviously, rankX ≥ rank (A B) ≥ rankA. If rankX = rankA, equal-
ity holds throughout, which implies KerX = Ker (A B).

Semidefinite programs. Consider the program

p∗ := sup
X∈Symn

〈C, A〉 s.t. X � 0, 〈Aj , X〉 = bj (j = 1, . . . , m) (1.12)

in the matrix variable X , where we are given C, A1, . . . , Am ∈ Symn and
b ∈ Rm. This is the standard (primal) form of a semidefinite program; its
dual semidefinite program reads:

d∗ := inf
y∈Rm

bT y s.t.

m∑

j=1

yjAj − C � 0 (1.13)

in the variable y ∈ Rm. Obviously,

p∗ ≤ d∗, (1.14)
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known as weak duality. Indeed, if X is feasible for (1.12) and y is feasible
for (1.13), then 0 ≤ 〈X,

∑m
j=1 yjAj −C〉 = bT y −〈C, X〉. One crucial issue

in duality theory is to identify sufficient conditions that ensure equality in
(1.14), i.e. a zero duality gap, in which case one speaks of strong duality.
We say that (1.12) is strictly feasible when there exists X ≻ 0 which is
feasible for (1.12); analogously (1.13) is strictly feasible when there exists
y feasible for (1.13) with

∑m
j=1 yjAj − C ≻ 0.

Theorem 1.3. If the primal program (1.12) is strictly feasible and
its dual (1.13) is feasible, then p∗ = d∗ and (1.13) attains its supremum.
Analogously, if (1.13) is strictly feasible and (1.12) is feasible, then p∗ = d∗

and (1.12) attains its infimum.

Semidefinite programs are convex programs. As one can test in poly-
nomial time whether a given rational matrix is positive semidefinite (using
e.g. Gaussian elimination), semidefinite programs can be solved in poly-
nomial time to any fixed precision using the ellipsoid method (cf. [45]).
Algorithms based on the ellipsoid method are however not practical since
their running time is prohibitively high. Interior-point methods turn out
to be the method of choice for solving semidefinite programs in practice;
they can find an approximate solution (to any given precision) in polyno-
mially many iterations and their running time is efficient in practice for
medium sized problems. There is a vast literature devoted to semidefinite
programming and interior-point algorithms; cf. e.g. [96, 117, 147, 150, 156].

We will use (later in Section 6.6) the following geometric property of
semidefinite programs. We formulate the property for the program (1.12),
but the analogous property holds for (1.13) as well.

Lemma 1.4. Let R := {X ∈ PSDn | 〈Aj , X〉 = bj (j = 1, . . . , m)}
denote the feasible region of the semidefinite program (1.12). If X∗ ∈ R
has maximum rank, i.e. rankX∗ = maxX∈R rankX, then KerX∗ ⊆ KerX
for all X ∈ R. In particular, if X∗ is an optimum solution to (1.12) for
which rankX∗ is maximum, then KerX∗ ⊆ KerX for any other optimum
solution X.

Proof. Let X∗ ∈ R for which rankX∗ is maximum and let X ∈ R.
Then X ′ := 1

2 (X∗ + X) ∈ R, with KerX ′ = KerX∗ ∩ KerX ⊆ KerX∗.
Thus equality KerX ′ = KerX∗ holds by the maximality assumption on
rankX∗, which implies KerX∗ ⊆ KerX . The last statement follows simply
by adding the constraint 〈C, X〉 = p∗ to the description of the set R.

Geometrically, what the above lemma says is that the maximum rank
matrices in R correspond to the matrices lying in the relative interior of the
convex set R. And the maximum rank optimum solutions to the program
(1.12) are those lying in the relative interior of the optimum face 〈C, X〉 =
p∗ of the feasible region R. As a matter of fact primal-dual interior-point
algorithms that follow the so-called central path to solve a semidefinite
program return a solution lying in the relative interior of the optimum face
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(cf. [156] for details). Thus (under certain conditions) it is easy to return
an optimum solution of maximum rank; this feature will be useful for the
extraction of global minimizers to polynomial optimization problems (cf.
Section 6.6). In contrast it is hard to find optimum solutions of minimum
rank. Indeed it is easy to formulate hard problems as semidefinite programs
with a rank condition. For instance, given a sequence a ∈ Nn, the program

p∗ := min 〈aaT , X〉 s.t. X � 0, Xii = 1 (i = 1, . . . , n), rankX = 1

solves the partition problem introduced in Section 1.1. Indeed any X � 0
with diagonal entries all equal to 1 and with rank 1 is of the form X = xxT

for some x ∈ {±1}n. Therefore, the sequence a = (a1, . . . , an) can be
partitioned precisely when p∗ = 0, in which case any optimum solution
X = xxT gives a partition of a, as aT x =

∑n
i=1 aixi = 0.

1.4. Contents of the paper. We provide in Section 2 more detailed
algebraic preliminaries about polynomial ideals and varieties and the reso-
lution of systems of polynomial equations. This is relevant to the problem
of extracting global minimizers for the polynomial optimization problem
(1.1) and can be read separately. Then the rest of the paper is divided into
two parts. Part 1 contains some background results about positive poly-
nomials and sums of squares (Section 3) and about the theory of moments
(Section 4), and more detailed results about (truncated) moment matri-
ces, in particular, from Curto and Fialkow (Section 5). Part 2 presents
the application to polynomial optimization; namely, the main properties
of the moment/SOS relaxations (Section 6), some further selected topics
dealing in particular with approximations of positive polynomials by sums
of squares and various approaches to unconstrained polynomial minimiza-
tion (Section 7), and exploiting algebraic structure to reduce the problem
size (Section 8).

2. Algebraic preliminaries. We group here some preliminaries on
polynomial ideals and varieties, and on the eigenvalue method for solving
systems of polynomial equations. For more information, see, e.g., [6, 19,
21, 22, 144].

2.1. Polynomial ideals and varieties. Let I be an ideal in R[x];
that is, I is an additive subgroup of R[x] satisfying fg ∈ I whenever f ∈ I
and g ∈ R[x]. Given h1, . . . , hm ∈ R[x],

(h1, . . . , hm) :=
{ m∑

j=1

ujhj | u1, . . . , um ∈ R[x]
}

denotes the ideal generated by h1, . . . , hm. By the finite basis theorem, any
ideal in R[x] admits a finite set of generators. Given an ideal I ⊆ R[x],
define

VC(I) := {x ∈ Cn | f(x) = 0 ∀f ∈ I}, VR(I) := VC(I) ∩ Rn;
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VC(I) is the (complex) variety associated to I and VR(I) is its real variety.
Thus, if I is generated by h1, . . . , hm, then VC(I) (resp., VR(I)) is the set
of common complex (resp., real) zeros of h1, . . . , hm. Observe that VC(I)
is closed under complex conjugation, i.e., v ∈ VC(I) for all v ∈ VC(I), since
I consists of polynomials with real coefficients. When VC(I) is finite, the
ideal I is said to be zero-dimensional. Given V ⊆ Cn,

I(V ) := {f ∈ R[x] | f(v) = 0 ∀v ∈ V }
is the vanishing ideal of V . Moreover,

√
I := {f ∈ R[x] | fk ∈ I for some integer k ≥ 1}

is the radical of I and

R
√
I :=

{
f ∈ R[x] | f2k +

m∑

j=1

p2
j ∈ I for some k ≥ 1, p1, . . . , pm ∈ R[x]

}

is the real radical of I. The sets I(V ),
√
I and R

√
I are again ideals in R[x].

Obviously, for an ideal I ⊆ R[x],

I ⊆
√
I ⊆ I(VC(I)), I ⊆ R

√
I ⊆ I(VR(I)).

The following celebrated results relate (real) radical and vanishing ideals.

Theorem 2.1. Let I be an ideal in R[x].
(i) (Hilbert’s Nullstellensatz) (see, e.g., [21, §4.1])

√
I = I(VC(I)).

(ii) (The Real Nullstellensatz) (see, e.g., [10, §4.1]) R
√
I = I(VR(I)).

The ideal I is said to be radical when I =
√
I, and real radical when

I = R
√
I. Roughly speaking, the ideal I is radical if all points of VC(I) have

single multiplicity. For instance, the ideal I := (x2) is not radical since
VC(I) = {0} and x ∈ I(VC(I)) \ I. Obviously, I ⊆ I(VC(I)) ⊆ I(VR(I)).
Hence, I real radical =⇒ I radical. Moreover,

I real radical with |VR(I)| < ∞ =⇒ VC(I) = VR(I) ⊆ Rn. (2.1)

Indeed, I(VC(I)) = I(VR(I)) implies VC(I(VC(I))) = VC(I(VR(I))). Now,
VC(I(VC(I))) = VC(I), and VC(I(VR(I))) = VR(I) since VR(I) is an al-
gebraic subset of Cn as it is finite. We will often use the following char-
acterization of (real) radical ideals which follows directly from the (Real)
Nullstellensatz:

I is radical (resp., real radical)
⇐⇒

The only polynomials vanishing at all points of VC(I)
(resp., all points of VR(I)) are the polynomials in I.

(2.2)

The following lemma gives a useful criterion for checking whether an ideal
is (real) radical.

Lemma 2.2. Let I be an ideal in R[x].
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(i) I is radical if and only if

∀f ∈ R[x] f2 ∈ I =⇒ f ∈ I. (2.3)

(ii) I is real radical if and only if

∀p1, . . . , pm ∈ R[x]

m∑

j=1

p2
j ∈ I =⇒ p1, . . . , pm ∈ I. (2.4)

Proof. The ‘only if’ part is obvious in (i), (ii); we prove the ‘if part’.
(i) Assume that (2.3) holds. Let f ∈ R[x]. We show fk ∈ I =⇒ f ∈ I

using induction on k ≥ 1. Let k ≥ 2. Using (2.3), we deduce f ⌈k/2⌉ ∈ I.
As ⌈k/2⌉ ≤ k − 1, we deduce f ∈ I using the induction assumption.

(ii) Assume that (2.4) holds. Let f, p1, . . . , pm ∈ R[x] such that
f2k +

∑m
j=1 p2

j ∈ I; we show that f ∈ I. First we deduce from (2.4)

that fk, p1, . . . , pm ∈ I. As (2.4) implies (2.3), we next deduce from the
case (i) that f ∈ I.

We now recall the following simple fact about interpolation polynomi-
als, which we will need at several occasions in the paper.

Lemma 2.3. Let V ⊆ Cn with |V | < ∞. There exist polynomials
pv ∈ C[x] (for v ∈ V ) satisfying pv(v) = 1 and pv(u) = 0 for all u ∈ V \{v};
they are known as Lagrange interpolation polynomials at the points of
V . Assume moreover that V is closed under complex conjugation, i.e.,
V = V := {v | v ∈ V }. Then we may choose the interpolation polynomials
in such a way that they satisfy pv = pv for all v ∈ V and, given scalars av

(v ∈ V ) satisfying av = av for all v ∈ V , there exists p ∈ R[x] taking the
prescribed values p(v) = av at the points v ∈ V .

Proof. Fix v ∈ V . For u ∈ V , u 6= v, pick an index iu ∈ {1, . . . , n}
for which uiu

6= viu
and define the polynomial pv :=

∏

u∈V \{v}

xiu
− uiu

viu
− uiu

.

Then the polynomials pv (v ∈ V ) satisfy the lemma. If V = V , then we
can choose the interpolation polynomials in such a way that pv = pv for all
v ∈ V . Indeed, for v ∈ V ∩ Rn, simply replace pv by its real part and, for
v ∈ V \ Rn, pick pv as before and choose pv := pv. Finally, if av = av for
all v ∈ V , then the polynomial p :=

∑
v∈V avpv has real coefficients and

satisfies p(v) = av for v ∈ V .

The algebraic tools just introduced here permit to show the following
result of Parrilo [105], giving a sum of squares decomposition for every
polynomial nonnegative on a finite variety assuming radicality of the asso-
ciated ideal.

Theorem 2.4. [105] Consider the semialgebraic set

K := {x ∈ Rn | h1(x)=0, . . . , hm0(x)=0, g1(x)≥0, . . . , gm(x)≥0}, (2.5)
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where h1, . . . , hm0 , g1, . . . , gm ∈ R[x] and m0 ≥ 1, m ≥ 0. Assume that
the ideal I := (h1, . . . , hm0) is zero-dimensional and radical. Then every
nonnegative polynomial on K is of the form u0 +

∑m
j=1 ujgj + q, where

u0, u1, . . . , um are sums of squares of polynomials and q ∈ I.

Proof. Partition V := VC(I) into S ∪ T ∪ T , where S = V ∩ Rn,
T ∪ T = V \ Rn. Let pv (v ∈ VC(I)) be interpolation polynomials at the
points of V , satisfying pv = pv for v ∈ T (as in Lemma 2.3). We first
show the following fact: If f ∈ R[x] is nonnegative on the set S, then
f = σ + q where σ is a sum of squares of polynomials and q ∈ I. For this,
for v ∈ S ∪ T , let γv =

√
f(v) be a square root of f(v) (thus, γv ∈ R if

v ∈ S) and define the polynomials qv ∈ R[x] by qv := γvpv for v ∈ S and
qv := γvpv + γvpv for v ∈ T . The polynomial f −∑v∈S∪T (qv)2 vanishes at
all points of V ; hence it belongs to I, since I is radical. This shows that
f = σ + q, where σ is a sum of squares and q ∈ I.

Suppose now that f ∈ R[x] is nonnegative on the set K. In view of
Lemma 2.3, we can construct polynomials s0, s1, . . . , sm ∈ R[x] taking the
following prescribed values at the points in V : If v ∈ V \S, or if v ∈ S and
f(v) ≥ 0, s0(v) := f(v) and sj(v) := 0 (j = 1, . . . , m). Otherwise, v 6∈ K

and thus gjv
(v) < 0 for some jv ∈ {1, . . . , m}; then sjv

(v) := f(v)
gjv (v) and

s0(v) = sj(v) := 0 for j ∈ {1, . . . , m} \ {jv}. By construction, each of the
polynomials s0, s1, . . . , sm is nonnegative on S. Using the above result, we
can conclude that sj = σj +qj , where σj is a sum of squares and qj ∈ I, for
j = 0, 1, . . . , m. Now the polynomial q := f − s0 −∑m

j=1 sjgj vanishes at

all points of V and thus belongs to I. Therefore, f = s0 +
∑m

j=1 sjgj + q =

σ0 +
∑m

j=1 σjgj + q′, where q′ := q + q0 +
∑m

j=1 qjgj ∈ I and σ0, σj are
sums of squares of polynomials.

2.2. The quotient algebra R[x]/I. Given an ideal I in R[x], the
elements of the quotient space R[x]/I are the cosets [f ] := f +I = {f + q |
q ∈ I}. R[x]/I is a R-vector space with addition [f ]+[g] = [f+g] and scalar
multiplication λ[f ] = [λf ], and an algebra with multiplication [f ][g] = [fg],
for λ ∈ R, f, g ∈ R[x]. Given h ∈ R[x], the ‘multiplication by h operator’

mh : R[x]/I −→ R[x]/I
f mod I 7−→ fh mod I (2.6)

is well defined. As we see later in Section 2.4, multiplication operators
play a central role in the computation of the variety VC(I). In what
follows we often identify a subset of R[x] with the corresponding subset
of R[x]/I consisting of the cosets of its elements. For instance, given
B = {b1, . . . , bN} ⊆ R[x], if the cosets [b1], . . . , [bN ] generate R[x]/I, i.e., if

any f ∈ R[x] can be written as
∑N

j=1 λjbj + q for some λ ∈ RN and q ∈ I,
then we also say by abuse of language that the set B itself is generating in
R[x]/I. Analogously, if the cosets [b1], . . . , [bN ] are pairwise distinct and
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form a linearly independent subset of R[x]/I, i.e., if
∑N

j=1 λjbj ∈ I implies
λ = 0, then we say that B is linearly independent in R[x]/I.

Theorem 2.6 below relates the cardinality of VC(I) and the dimension
of the quotient vector space R[x]/I. This is a classical result (see, e.g.,
[21]), which we will use repeatedly in our treatment. The following simple
fact will be used in the proof.

Lemma 2.5. Let I ⊆ R[x] with |VC(I)| < ∞. Partition VC(I) into
VC(I) = S ∪ T ∪ T where S = VC(I) ∩ Rn, and let pv be interpolation
polynomials at the points of VC(I) satisfying pv = pv for all v ∈ VC(I).
The set L := {pv (v ∈ S), Re(pv), Im(pv) (v ∈ T )} is linearly independent
in R[x]/I and generates R[x]/I(VC(I)).

Proof. Assume
∑

v∈S λvpv +
∑

v∈T λv Re(pv) + λ′
v Im(pv) ∈ I. Eval-

uating this polynomial at v ∈ VC(I) yields that all scalars λv, λ′
v are 0.

Thus L is linearly independent in R[x]/I. Given f ∈ R[x], the poly-
nomial f −∑v∈VC(I) f(v)pv lies in I(VC(I)). Now,

∑
v∈VC(I) f(v)pv =∑

v∈S f(v)pv +
∑

v∈T 2 Re(f(v)pv) can be written as a linear combination
of Re(pv) and Im(pv). This implies that L generates R[x]/I(VC(I)).

Theorem 2.6. An ideal I ⊆ R[x] is zero-dimensional (i.e., |VC(I)| <
∞) if and only if the vector space R[x]/I is finite dimensional. Moreover,
|VC(I)| ≤ dim R[x]/I, with equality if and only if the ideal I is radical.

Proof. Assume k := dim R[x]/I < ∞. Then, the set {1,x1, . . . ,x
k
1}

is linearly dependent in R[x]/I. Thus there exist scalars λ0, . . . , λk (not

all zero) for which the polynomial f :=
∑k

h=0 λhx
h
1 belongs to I. Thus,

for v ∈ VC(I), f(v) = 0, which implies that v1 takes only finitely many
values. Applying the same reasoning to the other coordinates, we deduce
that VC(I) is finite.

Assume now |VC(I)| < ∞. Say, {v1 | v ∈ VC(I)} = {a1, . . . , ak}. Then

the polynomial f :=
∏k

h=1(x1 − ah) belongs to I(VC(I)). By Theorem

2.1, f ∈
√
I, i.e., fm1 ∈ I for some integer m1 ≥ 1. Hence the set

{[1], [x1], . . . , [x
km1
1 ]} is linearly dependent in R[x]/I and thus, for some

integer n1 ≥ 1, [xn1
1 ] lies in SpanR([1], . . . , [xn1−1

1 ]). Similarly, for any other
coordinate xi, [xni

i ] ∈ SpanR([1], . . . , [xni−1
i ]) for some integer ni ≥ 1. From

this one can easily derive that the set {[xα] | 0 ≤ αi ≤ ni − 1 (1 ≤ i ≤ n)}
generates R[x]/I, which shows that dim R[x]/I < ∞.

Assume VC(I) is finite and let L be as in Lemma 2.5. As L is linearly
independent in R[x]/I with |L| = |VC(I)| we deduce that dim R[x]/I ≥
|VC(I)|. Moreover, if I is radical then I = I(VC(I)) and thus L is also
generating in R[x]/I, which implies dim R[x]/I = |VC(I)|. Finally, if I is
not radical, there exists a polynomial f ∈ I(VC(I)) \ I and it is easy to
verify that the set L ∪ {f} is linearly independent in R[x]/I.

For instance, the ideal I := (x2
i −xi | i = 1, . . . , n) is radical and zero-

dimensional, since VC(I) = {0, 1}n, and the set {∏l∈L xl | L ⊆ {1, . . . , n}}
is a linear basis of R[x]/I.
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Assume N := dim R[x]/I < ∞ and let B = {b1, . . . , bN} ⊆ R[x] be
a basis of R[x]/I; that is, any polynomial f ∈ R[x] can be written in a
unique way as

f =
N∑

j=1

λjbj

︸ ︷︷ ︸
resB(f)

+q, where q ∈ I and λ ∈ RN ;

in short, p ≡∑N
j=1 λjbj mod I. The polynomial resB(f) :=

∑N
j=1 λjbj is

called the residue of f modulo I with respect to the basis B. In other words,
the vector space SpanR(B) := {∑N

j=1 λjbj | λ ∈ RN} is isomorphic to
R[x]/I. As recalled in the next section, the set B≻ of standard monomials
with respect to any monomial ordering is a basis of R[x]/I; then the residue
of a polynomial f w.r.t. B≻ is also known as the normal form of f w.r.t.
the given monomial ordering. Let us mention for further reference the
following variation of Lemma 2.3.

Lemma 2.7. Let I be a zero-dimensional ideal in R[x] and let B be a
basis of R[x]/I. There exist interpolation polynomials pv at the points of
VC(I), where each pv is a linear combination of members of B.

Proof. Given a set of interpolation polynomials pv, replace pv by its
residue modulo I with respect to B.

2.3. Gröbner bases and standard monomial bases. A classi-
cal method for constructing a linear basis of the quotient vector space
R[x]/I is to determine a Gröbner basis of the ideal I with respect to some
given monomial ordering; then the corresponding set of standard monomi-
als provides a basis of R[x]/I. We recall here a few basic definitions about
monomial orderings, Gröbner bases, and standard monomials. A monomial
ordering ‘≻’ is a total ordering of the set Tn = {xα | α ∈ Nn} of monomials,
which is a well-ordering and satisfies the condition: xα ≻ xβ =⇒ xα+γ ≻
xβ+γ . We also write axα ≻ bxβ if xα ≻ xβ and a, b ∈ R \ {0}. Examples
of monomial orderings are the lexicographic order ‘≻lex’, where xα ≻lex xβ

if α > β for a lexicographic order on Nn, or the graded lexicographic order
‘≻grlex’, where xα ≻grlex xβ if |α| > |β|, or |α| = |β| and xα ≻lex xβ . The
latter is an example of a total degree monomial ordering, i.e., a monomial
ordering ≻ such that xα ≻ xβ whenever |α| > |β|.

Fix a monomial ordering ≻ on R[x]. For a nonzero polynomial f =∑
α fαxα, its terms are the quantities fαxα with fα 6= 0 and its leading

term LT(f) is defined as the maximum fαxα with respect to the given
ordering for which fα 6= 0. Let I be an ideal in R[x]. Its leading term ideal
is LT(I) := (LT(f) | f ∈ I) and the set

B≻ := Tn \ LT(I) = {xα | LT(f) does not divide xα ∀f ∈ I}
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is the set of standard monomials. A finite subset G ⊆ I is called a Gröbner
basis of I if LT(I) = LT(G); that is, if the leading term of every nonzero
polynomial in I is divisible by the leading term of some polynomial in G.
Hence xα ∈ B≻ if and only if xα is not divisible by the leading term of any
polynomial in G. A Gröbner basis always exists and it can be constructed,
e.g., using the algorithm of Buchberger.

Once a monomial ordering ≻ is fixed, one can apply the division algo-
rithm. Given nonzero polynomials f, g1, . . . , gm, the division algorithm ap-
plied to dividing f by g1, . . . , gm produces polynomials u1, . . . , um and r sat-
isfying f =

∑m
j=1 ujgj +r, no term of r is divisible by LT(gj) (j = 1, . . . , m)

if r 6= 0, and LT(f) ≻ LT(ujgj) if uj 6= 0. Hence deg(f) ≥ deg(ujgj)
if uj 6= 0, when the monomial ordering is a graded lexicographic or-
der. When the polynomials g1, . . . , gm form a Gröbner basis of the ideal
I := (g1, . . . , gm), the remainder r is uniquely determined and r is a linear
combination of the set of standard monomials, i.e., r ∈ SpanR(B≻); in par-
ticular, f ∈ I if and only if r = 0. In other words, the set B≻ of standard
monomials is a basis of the quotient vector space R[x]/I.

Example 2.8. Consider the polynomial f = x2y + xy2 + y2 to be
divided by the polynomials h1 = xy−1, h2 = y2−1. Fix the lex order with
x > y. Then LT(f) = x2y, LT(h1) = xy, LT(h2) = y2. As LT(h1)|LT(f),
we write

f = x2y + xy2 + y2 = (xy − 1)︸ ︷︷ ︸
h1

(x + y) + x + y2 + y︸ ︷︷ ︸
q

.

Now LT(q) = x is not divisible by LT(h1), LT(h2), but LT(h2) divides the
term y2 of q. Thus write

q = (y2 − 1)︸ ︷︷ ︸
h2

+x + y + 1.

This gives

f = h1(x + y) + h2 + x + y + 1. (2.7)

No term of the polynomial r := x + y + 1 is divisible by LT(h1), LT(h2),
thus r is the remainder of the division of f by h1, h2 (in that order). If we
do the division by h2, h1 then we get the following decomposition:

f = (x + 1)h2 + xh1 + 2x + 1. (2.8)

Thus (2.7), (2.8) are two disctinct decompositions of f of the form

f =
2∑

i=1

uihi + r
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where no term of r is divisible by LT(h1), LT(h2). Hence the remainder
is not uniquely defined. This is because the set {h1, h2} is not a Gröbner
basis of the ideal I := (h1, h2). Indeed the polynomial

h3 := yh1 − xh2 = y(xy − 1) − x(y2 − 1) = x− y ∈ I
and LT(h3) = x is not divisible by LT(h1), LT(h2). For the given monomial
ordering, the set of standard monomials is B = {1,y}, the set {h2, h3}
is a Gröbner basis of I, and dim R[x]/I = 2 = |VC(I)| with VC(I) =
{(1, 1), (−1,−1)}.

2.4. Solving systems of polynomial equations. One of the at-
tractive features of Lasserre’s method for minimizing a polynomial over
a semialgebraic set is that, when some technical rank condition holds for
the optimum solution of the given relaxation, then this relaxation is in fact
exact and moreover one can extract global minimizers for the original prob-
lem. This extraction procedure requires to solve a system of polynomial
equations

h1(x) = 0, . . . , hm0(x) = 0,

where the ideal I := (h1, . . . , hm0) is zero-dimensional (and in fact radical).
This problem has received considerable attention in the literature. We
present the so-called eigenvalue method (also known as the Stetter-Möller
method [92]) which relates the points of VC(I) to the eigenvalues of the
multiplication operators in the quotient space R[x]/I. See, e.g., [19, 37,
144] for a detailed account on this method and various other methods for
solving systems of polynomial equations.

Fix a basis B = {b1, . . . , bN} of R[x]/I and let Mh denote the matrix
of the multiplication operator operator mh from (2.6) with respect to the

basis B. Namely, for j = 1, . . . , N , let resB(hbj) =
∑N

i=1 aijbi denote the
residue of hbj modulo I w.r.t. B, i.e.,

hbj −
N∑

i=1

aijbi ∈ I; (2.9)

then the jth column of Mh is equal to the vector (aij)
N
i=1. When h = xi, the

multiplication matrices Mxi
(i = 1, . . . , n) are also known as the companion

matrices of the ideal I. Theorem 2.9 below shows that the coordinates of
the points v ∈ V can be obtained from the eigenvalues of the companion
matrices. As a motivation we first treat the univariate case.

Motivation: The univariate case. Given a univariate polynomial

p = xd − pd−1x
d−1 − . . . − p0

consider the ideal I = (p) (obviously zero-dimensional). The set B =
{1,x, . . . ,xd−1} is a basis of R[x]/(p). With respect to B, the multiplication
matrix Mx has the form
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Mx =




0 . . . 0 p0

p1

I
...

pd−1




where I is the identity matrix of size (d− 1)× (d− 1). One can verify that
det(Mx − tI) = (−1)dp(t). Therefore, the eigenvalues of the companion
matrix Mx are precisely the roots of the polynomial p. We now see how
this fact extends to the multivariate case.

The multivariate case. The multiplication operators mx1 , . . . , mxn

commute pairwise. Therefore the set {Mf | f ∈ R[x]} is a commutative
algebra of N ×N matrices. For a polynomial h ∈ R[x], h =

∑
α hαxα, note

Mh = h(Mx1 , . . . , Mxn
) =

∑

α

hα(Mx1)
α1 · · · (Mxn

)αn =: h(M),

Mh = 0 ⇐⇒ h ∈ I.

Based on this, one can easily find the minimal polynomial of Mh (i.e. the
monic polynomial p ∈ R[t] of smallest degree for which p(Mh) = 0). In-

deed, for p =
∑d

i=0 pit
i ∈ R[t], p(Mh) =

∑
i pi(Mh)i = Mp(h) = 0 if and

only if p(h) ∈ I. Thus one can find the minimal polynomial of Mh by com-
puting the smallest integer d for which the set {[1], [h], . . . , [hd]} is linearly
dependent in R[x]/I. In particular, the minimal polynomial of Mxi

is the
monic generator of the elimination ideal I ∩ R[xi].

Let pv ∈ R[x] be Lagrange interpolation polynomials at the points of
VC(I). As observed in Lemma 2.7, we may assume that pv ∈ SpanR(B)

for all v ∈ VC(I). For a polynomial p ∈ SpanR(B), p =
∑N

i=1 aibi with
ai ∈ R, let vecB(p) := (ai)

N
i=1 denote the vector of its coefficients in B. Set

ζB,v := (bi(v))N
i=1 ∈ CN , the vector of evaluations at v of the polynomials

in the basis B. Observe that

{ζB,v | v ∈ VC(I)} is linearly independent in CN . (2.10)

Indeed assume
∑

v∈VC(I) λvζB,v = 0, i.e.,
∑

v∈VC(I) λvbi(v) = 0 for i =

1, . . . , N . As B is a basis of R[x]/I, this implies that
∑

v∈VC(I) λvf(v) = 0

for any f ∈ R[x]. Applying this to f := Re(pv), Im(pv) we find λv = 0 ∀v.

Theorem 2.9. (Stickelberger eigenvalue theorem) Let h ∈ R[x].
The set {h(v) | v ∈ VC(I)} is the set of eigenvalues of Mh. More precisely,

MT
h ζB,v = h(v)ζB,v ∀v ∈ VC(I) (2.11)

and, if I is radical, then

MhvecB(pv) = h(v)vecB(pv) ∀v ∈ VC(I). (2.12)
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Proof. We first show (2.11). Indeed, (MT
h ζB,v)j =

∑N
i=1 bj(v)aij is

equal to h(v)bj(v) (using (2.9)). Thus h(v) is an eigenvalue of MT
h with

eigenvector ζB,v. Note that ζB,v 6= 0 by (2.10).

We now show (2.12) if I is radical. Say, pv =
∑N

j=1 cjbj, i.e.,

vecB(pv) = (cj)
N
j=1. The i-th component of q := MhvecB(pv) is qi =∑N

j=1 aijcj . In order to show qi = h(v)ci for all i, it suffices to show that

the polynomial f :=
∑N

i=1(qi − h(v)ci)bi belongs to I and, as I is radical,
this holds if we can show that f vanishes at VC(I). Now,

f =

N∑

i=1

(

N∑

j=1

aijcj − h(v)ci)bi =

N∑

j=1

cj(

N∑

i=1

aijbi) − h(v)

N∑

i=1

cibi

=

N∑

j=1

cj(

N∑

i=1

aijbi − hbj + hbj) − h(v)pv

≡
N∑

j=1

cjhbj − h(v)pv = (h − h(v))pv mod I

(using (2.9)). Thus, f vanishes at VC(I).
Remains to show that any eigenvalue λ of Mh belongs to the set

h(VC(I)) := {h(v) | v ∈ VC(I)}. If I is radical, this is clear since we
have already found |VC(I)| = N linearly independent eigenvectors ζB,v

(v ∈ VC(I)) (by (2.10)). Otherwise, assume λ 6∈ h(VC(I)). Then the
system h1(x) = 0, . . . , hm0(x) = 0, h(x) − λ = 0 has no solution. By
Hilbert’s Nullstellensatz (Theorem 2.1), 1 ∈ (h1, . . . , hm0 , h − λ). That is,
1 =

∑m0

j=1 fjhj + f(h − λ) for some polynomials fj , f . Hence,

I = M1 = MPm0
j=1 fjhj+f(h−λ) =

m0∑

j=1

Mfjhj
+Mf(Mh−λI) = Mf(Mh−λI)

since Mfjhj
= 0 as fjhj ∈ I. Thus Mh − λI is nonsingular which means

that λ is not an eigenvalue of Mh.

Example 2.10. Consider the ideal I = (h1, h2, h3) ⊆ R[x,y] where

h1 = x2 + 2y2 − 2y
h2 = xy2 − xy
h3 = y3 − 2y2 + y.

Obviously, VC(I) = {(0, 0), (0, 1)}. One can show that, with respect to the
lexicographic order with x > y, the set {h1, h2, h3} is a Gröbner basis of
I. As the leading terms of h1, h2, h3 are x2,xy2,y3, the corresponding set
of standard monomials is B = {1,y,y2,x,xy} and dim R[x,y]/I = 5. As
x2y ≡ −2y2 + 2y mod I, the multiplication matrices read:
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Mx =




0 0 0 0 0
0 0 0 2 2
0 0 0 −2 −2
1 0 0 0 0
0 1 1 0 0




, My =




0 0 0 0 0
1 0 −1 0 0
0 1 2 0 0
0 0 0 0 0
0 0 0 1 1




and their characteristic polynomials are det(Mx− tI) = t5, det(My− tI) =
t2(t − 1)3.

Example 2.11. Consider now the ideal I = (x2,y2) in R[x,y]. Ob-
viously, VC(I) = {(0, 0)}, {x2,y2} is a Gröbner basis w.r.t. any monomial
ordering, with corresponding set B = {1,x,y,xy} of standard monomials.
Thus dim R[x,y]/I = 4,

Mx =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 , My =




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


 ,

both with characteristic polynomial t4.

By Theorem 2.9, the eigenvalues of the companion matrices Mxi
are

the coordinates vi of the points v ∈ VC(I). It is however not clear how to
put these coordinates together for recovering the full vectors v. For this it is
better to use the eigenvectors ζB,v of the transpose multiplication matrices.
Recall that a square matrix M is non-derogatory if all its eigenspaces have
dimension 1; that is, if dimKer(M − λI) = 1 for each eigenvalue λ of M .
The next result follows directly from Theorem 2.9.

Lemma 2.12. The following holds for a multiplication matrix Mh.
(i) If MT

h is non-derogatory then h(v) (v ∈ VC(I)) are pairwise distinct.
(ii) If I is radical and h(v) (v ∈ VC(I)) are pairwise distinct, then MT

h is
non-derogatory.

Finding VC(I) via the eigenvectors of a non-derogatory multi-
plication matrix Mh. Assume we can find h ∈ R[x] for which the matrix
MT

h is non-derogatory. We can assume without loss of generality that the
chosen basis B of R[x]/I contains the constant polynomial b1 = 1. Let λ
be an eigenvalue of MT

h with eigenvector u. By Theorem 2.9, λ = h(v) and
u is a scalar multiple of ζB,v for some v ∈ VC(I); by rescaling (i.e. replace u
by u/u1 where u1 is the component of u indexed by b1 = 1), we may assume
u = ζB,v. If x1, . . . ,xn ∈ B, one can read the coordinates of v directly from
the eigenvector u. Otherwise, express xi as a linear combination modulo I
of the members of B, say, xi =

∑N
j=1 cjbj mod I. Then, vi =

∑N
j=1 cjbj(v)

can be computed from the coordinates of the eigenvector u.
One can show that if there exists some h ∈ R[x] for which MT

h is
non-derogatory, then there exists a linear such polynomial h =

∑n
i=1 cixi.

Following the strategy of Corless, Gianni and Trager [20], one can find
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such h by choosing the ci’s at random. Then, with high probability, h(v)
(v ∈ VC(I)) are pairwise distinct. If I is radical then MT

h is non-derogatory
(by Lemma 2.12). If we succeed to find a non-derogatory matrix after a few
trials, we can proceed to compute VC(I); otherwise we are either unlucky or
there exists no non-derogatory matrix. Then one possibility is to compute
the radical

√
I of I using, for instance, the following characterization:

√
I = (h1, . . . , hm, (p1)red, . . . , (pn)red)

where pi is the monic generator of I ∩ R[xi] and (pi)red is its square-free
part. The polynomial pi can be found in the following way: Let ki be the
smallest integer for which the set {[1], [xi], . . . , [x

ki

i ]} is linearly dependent

in R[x]/I. Then the polynomial xki

i +
∑ki−1

j=0 cjx
j
i lies in I for some scalars

cj and, by the minimality of ki, it generates I ∩ R[xi].

Example 2.10 (continued). None of MT
x , MT

y is non-derogatory. In-

deed, 0 is the only eigenvalue of MT
x whose corresponding eigenspace is

KerMT
x = {u ∈ R5 | u2 = u3, u4 = u5 = 0} with dimension 2 and

spanned by ζB,(0,0) and ζB,(0,1). The eigenspace of MT
y for eigenvalue 0

is KerMT
y = {u ∈ R5 | u2 = u3 = u4 = 0} with dimension 2 and

spanned by ζB,(0,0) and (0, 0, 0, 1, 0)T . The eigenspace with eigenvalue 1
is Ker(MT

y − I) = {u ∈ R5 | u1 = u2 = u3, u4 = u5} also with dimension 2

and spanned by ζB,(0,1) and (0, 0, 0, 1, 1)T . Thus, for h = y, this gives an
example where h(v) (v ∈ VC(I)) are pairwise distinct, yet the matrix MT

h

is not non-derogatory. On the other hand, for h = 2x + 3y,

Mh = 2Mx + 3My =




0 0 0 0 0
3 0 −3 4 4
0 3 6 −4 −4
2 0 0 0 0
0 2 2 3 3




and MT
h is non-derogatory. Indeed, MT

h has two eigenvalues 0, 3. The
eigenspace for the eigenvalue 0 is spanned by ζB,(0,0), permitting to extract
the root v = (0, 0), and the eigenspace for the eigenvalue 3 is spanned by
ζB,(0,1), permitting to extract the root v = (0, 1).

Example 2.11 (continued). In this example every matrix MT
h is

derogatory. Indeed, say h = a + bx + cy + dx2 + exy + . . .. Then,

Mh =




a b c e
0 a 0 c
0 0 a b
0 0 0 a


 .

Thus a is the only eigenvalue of MT
h with eigenvector space of dimension

at least 2.
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Part 1: Sums of Squares and Moments

3. Positive polynomials and sums of squares.

3.1. Some basic facts. A concept which will play a central role in
the paper is the following notion of sum of squares. A polynomial p is
said to be a sum of squares of polynomials, sometimes abbreviated as ‘p
is SOS’, if p can be written as p =

∑m
j=1 u2

j for some u1, . . . , um ∈ R[x].
Given p ∈ R[x] and S ⊆ Rn, the notation ‘p ≥ 0 on S’ means ‘p(x) ≥ 0 for
all x ∈ S’, in which case we say that p is nonnegative on S; analogously,
p > 0 on S means that p is positive on S. We begin with some simple
properties of sums of squares.

Lemma 3.1. If p ∈ R[x] is a sum of squares then deg(p) is even
and any decomposition p =

∑m
j=1 u2

j where uj ∈ R[x] satisfies deg(uj) ≤
deg(p)/2 for all j.

Proof. Assume p is SOS. Then p(x) ≥ 0 for all x ∈ Rn and thus
deg(p) must be even, say deg(p) = 2d. Write p =

∑m
j=1 u2

j and let k :=
maxj deg(uj). Assume k ≥ d+1. Write each uj =

∑
α uj,αxα as uj = aj +

bj , where bj :=
∑

α||α|=k uj,αxα and aj := uj−bj . Then p−∑j a2
j−2ajbj =∑

j b2
j . Here

∑
j b2

j is a homogeneous polynomial of degree 2k ≥ 2d + 2,

while p−∑j a2
j − 2ajbj is a polynomial of degree ≤ 2k − 1, which yields a

contradiction. This shows deg(uj) ≤ d for all j.

Lemma 3.2. Let p be a homogeneous polynomial of degree 2d. If p
is SOS, then p is a sum of squares of homogeneous polynomials (each of
degree d).

Proof. Assume p =
∑m

j=1 u2
j where uj ∈ R[x]. Write uj = aj + bj

where aj is the sum of the terms of degree d of uj and thus deg(bj) ≤ d−1.
Then, p −∑m

j=1 a2
j =

∑m
j=1 b2

j + 2ajbj is equal to 0, since otherwise the
right hand side has degree ≤ 2d− 1 and the left hand side is homogeneous
of degree 2d.

Lemma 3.3. Consider a polynomial p ∈ R[x] and its homogenization
p̃ ∈ R[x,xn+1]. Then, p ≥ 0 on Rn (resp., p SOS) ⇐⇒ p̃ ≥ 0 on Rn+1

(resp., p̃ SOS).

Proof. The ‘if part’ follows from the fact that p(x) = p̃(x, 1) for all x ∈
Rn. Conversely, if p ≥ 0 on Rn then d := deg(p) is even and p̃(x, xn+1) =
xd

n+1p̃(x/xn+1, 1) = xd
n+1p(x) ≥ 0 whenever xn+1 6= 0. Thus p̃ ≥ 0 by

continuity. An analogous argument shows that, if p =
∑

j u2
j with uj ∈

R[x], then p̃ =
∑

j ũ2
j , where ũj is the homogenization of uj .

3.2. Sums of squares and positive polynomials: Hilbert’s re-
sult. Throughout the paper,

Pn := {p ∈ R[x] | p(x) ≥ 0 ∀x ∈ Rn} (3.1)
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denotes the set of nonnegative polynomials on Rn (also called positive
semidefinite polynomials in the literature) and

Σn := {p ∈ R[x] | p SOS} (3.2)

is the set of polynomials that are sums of squares; we sometimes omit the
index n and simply write P = Pn and Σ = Σn when there is no danger of
confusion on the number of variables. We also set

Pn,d := Pn ∩ R[x]d, Σn,d := Σn ∩ R[x]d.

Obviously any polynomial which is SOS is nonnegative on Rn; that is,

Σn ⊆ Pn, Σn,d ⊆ Pn,d. (3.3)

As is well known (cf. Lemma 3.5), equality holds in (3.3) for n = 1 (i.e.
for univariate polynomials), but the inclusion Σn ⊆ Pn is strict for n ≥ 2.
The following celebrated result of Hilbert [56] classifies the pairs (n, d) for
which equality Σn,d = Pn,d holds.

Theorem 3.4. Σn,d = Pn,d ⇐⇒ n = 1, or d = 2, or (n, d) = (2, 4).

We give below the arguments for the equality Σn,d = Pn,d in the two
cases n = 1, or d = 2, which are simple and which were already well
known in the late 19th century. In his paper [56] David Hilbert proved
that P2,4 = Σ2,4; moreover he proved that any nonnegative polynomial
in n = 2 variables with degree 4 is a sum of three squares; equivalently,
any nonnegative ternary quartic form is a sum of three squares. Choi
and Lam [17] gave a relatively simple proof for the equality P2,4 = Σ2,4,
based on geometric arguments about the cone Σ2,4; their proof shows a
decomposition into five squares. Powers et al. [110] found a new approach
to Hilbert’s theorem and gave a proof of the three squares result in the
nonsingular case.

Lemma 3.5. Any nonnegative univariate polynomial is a sum of two
squares.

Proof. Assume p is a univariate polynomial and p ≥ 0 on R. Then
the roots of p are either real with even multiplicity, or appear in complex
conjugate pairs. Thus p = c

∏r
i=1(x − ai)

2ri ·∏s
j=1((x − bj)

2 + c2
j)

sj for
some scalars ai, bj , cj , c ∈ R, c > 0, and r, s, ri, sj ∈ N. This shows that
p is SOS. To see that p can be written as a sum of two squares, use the
identity (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 (for a, b, c, d ∈ R).

Lemma 3.6. Any nonnegative quadratic polynomial is a sum of
squares.

Proof. Let p ∈ R[x]2 of the form p = xT Qx + 2cTx + b, where Q
is a symmetric n × n matrix, c ∈ Rn and b ∈ R. Its homogenization is
p̃ = xT Qx + 2xn+1c

Tx + bx2
n+1, thus of the form p̃ = x̃T Q̃x̃, after setting
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x̃ := (x,xn+1) and Q̃ :=

(
Q cT

c b

)
. By Lemma 3.3, p̃ ≥ 0 on Rn+1 and

thus the matrix Q̃ is positive semidefinite. Therefore, Q̃ =
∑

j u(j)(u(j))T

for some u(j) ∈ Rn+1, which gives p̃ =
∑

j(
∑n+1

i=1 u
(j)
i xi)

2 is SOS and thus
p too is SOS (by Lemma 3.3 again).

According to Hilbert’s result (Theorem 3.4), for any pair (n, d) 6= (2, 4)
with n ≥ 2, d ≥ 4 even, there exists a polynomial in Pn,d \ Σn,d. Some
well known such examples include the Motzkin and Robinson polynomials
described below.

Example 3.7. The polynomial p := x2
1x

2
2(x

2
1 + x2

2 − 3) + 1, known
as the Motzkin polynomial, belongs to P2,6 \Σ2,6. Indeed, p(x1, x2) ≥ 0
if x2

1 + x2
2 ≥ 3. Otherwise, set x2

3 := 3 − x2
1 − x2

2. By the arithmetic

geometric mean inequality, we have
x2
1+x2

2+x2
3

3 ≥ 3
√

x2
1x

2
2x

2
3, giving again

p(x1, x2) ≥ 0. One can verify directly that p cannot be written as a sum
of squares of polynomials. Indeed, assume p =

∑
k u2

k, where uk = akx
3
1 +

bkx
2
1x2 + ckx1x

2
2 + dkx

3
2 + ekx

2
1 + fkx1x2 + gkx

2
2 + hkx1 + ikx2 + jk for

some scalars ak, . . . , jk ∈ R. Looking at the coefficient of x6
1 in p, we find

0 =
∑

k a2
k, giving ak = 0 for all k; analogously dk = 0 for all k. Next,

looking at the coefficient of x4
1 and x4

2 yields ek = gk = 0 for all k; then
looking at the coefficient of x2

1,x
2
2 yields hk = ik = 0 for all k; finally the

coefficient of x2
1x

2
2 in p is equal to −3 =

∑
k f2

k , yielding a contradiction.
Note that this argument shows in fact that p − ρ is not a sum of squares
for any scalar ρ ∈ R.

Therefore the homogeneous Motzkin form M := x2
1x

2
2(x

2
1 + x2

2 −
3x2

3) + x6
3 is nonnegative but not a sum of squares.

The polynomial p := x6
1+x6

2+x6
3−
∑

1≤i<j≤3(x
2
i x

2
j (x

2
i +x2

j))+3x2
1x

2
2x

2
3,

known as the Robinson form, is nonnegative but not a sum of squares.
See e.g. [120] for details.

We refer to Reznick [120] for a nice overview and historic discussion of
Hilbert’s results. More examples of positive polynomials that are not sums
of squares can be found e.g. in the recent papers [16], [121] and references
therein.

3.3. Recognizing sums of squares of polynomials. We now in-
dicate how to recognize whether a polynomial can be written as a sum
of squares via semidefinite programming. The next result was discovered
independently by several authors; cf. e.g. [18], [112].

Lemma 3.8. Recognizing sums of squares.
Let p ∈ R[x], p =

∑
α∈Nn

2d
pαxα, be a polynomial of degree ≤ 2d. The

following assertions are equivalent.

(i) p is a sum of squares.
(ii) The following system in the matrix variable X = (Xα,β)α,β∈Nn

d
is

feasible:
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X � 0∑

β,γ∈Nn
d
|β+γ=α

Xβ,γ = pα (|α| ≤ 2d). (3.4)

Proof. Let zd := (xα | |α| ≤ d) denote the vector containing all mono-
mials of degree at most d. Then for polynomials uj ∈ R[x]d, we have
uj = vec(uj)

T zd and thus
∑

j u2
j = zT

d (
∑

j vec(uj)vec(uj)
T )zd. There-

fore, p is a sum of squares of polynomials if and only if p = zT
d Xzd for

some positive semidefinite matrix X . Equating the coefficients of the two
polynomials p and zT

d Xzd, we find the system (3.4).

Thus to decide whether the polynomial p can be written as a sum
of squares one has to verify existence of a positive semidefinite matrix X
satisfying the linear equations in (3.4) and any Gram decomposition of X
gives a sum of square decomposition for p. For this reason this method
is often called the Gram-matrix method in the literature (e.g. [18]). The
system (3.4) is a system in the matrix variable X , which is indexed by Nn

d

and thus has size
(
n+d

d

)
, and with

(
n+2d

2d

)
equations. Therefore, this system

has polynomial size if either n is fixed, or d is fixed. The system (3.4) is an
instance of semidefinite program. Thus finding a sum of square decompo-
sition of a polynomial can be done using semidefinite programming. Note
also that if p has a sum of squares decomposition then it has one involving
at most |Nn

d | =
(
n+d

d

)
squares.

We now illustrate the method on a small example.

Example 3.9. Suppose we want to find a sum of squares decomposi-
tion for the polynomial p = x4 + 2x3y + 3x2y2 + 2xy3 + 2y4 ∈ R[x,y]4.
As p is a form of degree 4, we want to find X � 0 indexed by x2,xy,y2

satisfying

p = (x2 xy y2)




a b c
b d e
c e f




︸ ︷︷ ︸
X




x2

xy
y2


 .

Equating coefficients:

x4 = x2 · x2 1 = a
x3y = x2 · xy 2 = 2b
x2y2 = xy · xy = x2 · y2 3 = d + 2c
xy3 = xy · y2 2 = 2e
y4 = y2 · y2 2 = f

we find X =




1 1 c
1 3 − 2c 1
c 1 2


. Therefore X � 0 ⇐⇒ −1 ≤ c ≤ 1. E.g. for

c = −1, c = 0, we find, respectively, the matrix
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X =




1 0
1 2
−1 1



(

1 1 −1
0 2 1

)
,




1 0 0

1
√

3
2

√
1
2

0
√

3
2 −

√
1
2







1 1 0

0
√

3
2

√
3
2

0
√

1
2 −

√
1
2




giving, respectively, the decompositions p = (x2 +xy−y2)2 +(y2 + 2xy)2

and p = (x2 + xy)2 + 3
2 (xy + y2)2 + 1

2 (xy − y2)2.

3.4. SOS relaxations for polynomial optimization. Although we
will come back to it in detail in Section 6, we already introduce here the
SOS relaxations for the polynomial optimization problem (1.1) as this will
motivate our exposition later in this section of several representation results
for positive polynomials. Note first that problem (1.1) can obviously be
reformulated as

pmin = sup ρ s.t. p − ρ ≥ 0 on K = sup ρ s.t. p − ρ > 0 on K. (3.5)

That is, computing pmin amounts to finding the supremum of the scalars ρ
for which p−ρ is nonnegative (or positive) on the set K. To tackle this hard
problem it is a natural idea (going back to work of Shor [138–140], Nesterov
[95], Lasserre [65], Parrilo [103, 104]) to replace the nonnegativity condition
by some simpler condition, involving sums of squares, which can then be
tackled using semidefinite programming. For instance, in the unconstrained
case when K = Rn, consider the parameter

psos := sup ρ s.t. p − ρ is SOS. (3.6)

As explained in the previous section, the parameter psos can be computed
via a semidefinite program involving a matrix of size |Nn

d | if p has degree
2d. Obviously, psos ≤ pmin, but as follows from Hilbert’s result (Theorem
3.4), the inequality may be strict. For instance, when p is the Motzkin
polynomial considered in Example 3.7, then psos = −∞ < pmin = 0 as
p vanishes at (±1,±1). In the constrained case, one way to relax the
condition ‘p−ρ ≥ 0 on K’ is by considering a sum of square decomposition
of the form p − ρ = s0 +

∑m
j=1 sjgj where s0, sj are SOS. This yields the

parameter:

psos := sup ρ s.t. p − ρ = s0 +

m∑

j=1

sjgj with s0, sj SOS. (3.7)

Again psos ≤ pmin and, under certain assumption on the polynomials gj

describing the set K (cf. Theorem 3.20 below), equality holds. The above
formulation does not lead yet to a semidefinite program, since it is not
obvious how to bound the degrees of the polynomials s0, sj as cancellation
of terms may occur in s0 +

∑
j sjgj . To get a semidefinite program one
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may consider for any integer t with 2t ≥ max(deg p, deg(g1), . . . , deg(gm))
the parameter

psos
t := sup ρ s.t. p − ρ = s0 +

∑m
j=1 sjgj with s0, sj ∈ Σ,

deg(s0), deg(sjgj) ≤ 2t.
(3.8)

Hence each psos
t can be computed via a semidefinite program involving

matrices of size |Nn
t |, psos

t ≤ psos
t+1 ≤ psos ≤ pmin, and limt→∞ psos

t = psos.

3.5. Convex quadratic polynomial optimization. Here we con-
sider problem (1.1) in the convex quadratic case, i.e. when p,−g1, . . . ,−gm

are convex quadratic polynomials. Say p = xT Qx + 2cTx + b, gj =
xT Qjx + 2cT

j x + bj, where Q, Qj are symmetric n × n matrices satisfy-
ing Q,−Qj � 0, c, cj ∈ Rn, and b, bj ∈ R. First observe that, in the convex
quadratic case (i.e. when −Q1, . . . ,−Qm � 0), the semialgebraic set K
from (1.2) admits the following semidefinite representation:

K = {x ∈ Rn | ∃X ∈ Rn×n such that

(
1 xT

x X

)
� 0,

〈(
bj cT

j

cj Qj

)
,

(
1 xT

x X

)〉
≥ 0 (j = 1, . . . , m)},

(3.9)

(direct verification). Therefore, when minimizing a linear polynomial p over
K, the infimum pmin is already given by its first order moment relaxation,
i.e. pmin = pmom

1 (see Section 4.2 for the definition of pmom
1 ).

We now observe that when p is a convex quadratic polynomial then,
under some technical condition, the infimum pmin is given by the first order
sum of squares bound psos

1 . Let J(x∗) := {j ∈ {1, . . . , m} | gj(x
∗) = 0} for

x∗ ∈ K, and consider the following (MFCQ) constraint qualification:

∃w ∈ Rn for which wT∇gj(x
∗) > 0 ∀j ∈ J(x∗); (3.10)

equivalently,
∑

j∈J(x∗) λj∇gj(x
∗) = 0 with λj ≥ 0 ∀j implies λj = 0 ∀j.

Lemma 3.10. [65] Consider problem (1.1) where p,−g1, . . . ,−gm are
quadratic convex polynomials and assume that the set K from (1.2) is com-
pact. If there exists a local (thus global) minimizer x∗ satisfying (3.10), then
psos
1 = pmin.

Proof. The bound psos
1 is defined by

psos
1 = supρ,λj∈R ρ s.t. p − ρ −∑m

j=1 λjgj ∈ Σ, λ1, . . . , λm ≥ 0

= supρ,λj∈R ρ s.t. p − ρ −∑m
j=1 λjgj ∈ P , λ1, . . . , λm ≥ 0,

where the last equality follows using Lemma 3.6, It suffices now to show
that pmin is feasible for the program defining psos

1 . For this let x∗ ∈ K
be a local minimizer of p over the set K satisfying (3.10). Then there
exist scalars λ1, . . . , λm ≥ 0 for which the first order Karush-Kuhn-Tucker
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conditions hold (cf. e.g. [101, §12.5]). That is, λjgj(x
∗) = 0 ∀j and

∇p(x∗) =
∑

j λj∇gj(x
∗), implying

Qx∗ + c =
m∑

j=1

λj(Qjx
∗ + cj). (3.11)

We claim that

p − pmin −
m∑

j=1

λjgj = (x − x∗)T (Q −
m∑

j=1

λjQj)(x − x∗). (3.12)

Indeed, p − pmin −∑m
j=1 λjgj = p − pmin +

∑
j λj(gj(x

∗) − gj) is equal

to xT (Q − ∑j λjQj)x + 2(c − ∑j λjcj)
T x − (x∗)T (Q − ∑

j λjQj)x
∗ +

2(
∑

j λjcj − c)T x∗ which, using (3.11), gives the desired identity (3.12).

As Q −∑j λjQj � 0, (3.12) implies that p − pmin −∑m
j=1 λjgj is nonneg-

ative over Rn, which concludes the proof.

3.6. Some representation results for positive polynomials.

Certificates for positivity via the Positivstellensatz. A classical
result about polynomials is Hilbert’s Nullstellensatz which characterizes
when a system of polynomials in C[x] has a common root in Cn. The
next result is sometimes called the weak Nullstellensatz, while the result of
Theorem 2.1 (i) is Hilbert’s strong Nullstellensatz.

Theorem 3.11. (cf. e.g. [21]) Hilbert’s (weak) Nullstellensatz.
Given polynomials h1, . . . , hm ∈ C[x], the system h1(x) = 0, . . . , hm(x) = 0
does not have a common root in Cn if and only if 1 ∈ (h1, . . . , hm), i.e.
1 =

∑m
j=1 ujhj for some polynomials uj ∈ C[x].

As a trivial example, the system h1 := x+1 = 0, h2 := x2 +1 = 0 has
no common root, which is certified by the identity 1 = (1−x)/2h1 + h2/2.
The above result works only in the case of an algebraically closed field
(like C). For instance, x2 + 1 = 0 has no solution in R, but 1 does not
belong to the ideal generated by x2 + 1. A basic property of the real field
R is that

∑n
i=1 a2

i = 0 =⇒ a1 = . . . = an = 0, i.e. −1 is not a sum of
squares in R. These properties are formalized in the theory of formally real
fields (cf. [14, 114]) and one of the objectives of real algebraic geometry is
to understand when systems of real polynomial equations and inequalities
have solutions in Rn. An answer is given in Theorem 3.12 below, known
as the Positivstellensatz, due to Stengle [142]. A detailed exposition can
be found e.g. in [87, 114]. We need some definitions. Given polynomials
g1, . . . , gm ∈ R[x], set gJ :=

∏
j∈J gj for J ⊆ {1, . . . , m}, g0 := 1. The set

T (g1, . . . , gm) :=

{ ∑

J⊆{1,...,m}

uJgJ | uJ ∈ Σ

}
, (3.13)
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is called the preordering on R[x] generated by g1, . . . , gm. As in (1.2), let
K = {x ∈ Rn | g1(x) ≥ 0 . . . gm(x) ≥ 0}.

Theorem 3.12. Positivstellensatz. Given a polynomial p ∈ R[x],
(i) p > 0 on K ⇐⇒ pf = 1 + g for some f, g ∈ T (g1, . . . , gm).
(ii) p ≥ 0 on K ⇐⇒ pf = p2k + g for some f, g ∈ T (g1, . . . , gm) and

k ∈ N.
(iii) p = 0 on K ⇐⇒ −p2k ∈ T (g1, . . . , gm) for some k ∈ N.

Corollary 3.13. Real Nullstellensatz. Given p, h1, . . . , hm ∈
R[x], p vanishes on {x ∈ Rn | hj(x) = 0 (j = 1, . . . , m)} if and only if
p2k + s =

∑m
j=1 ujhj for some uj ∈ R[x], s ∈ Σ, k ∈ N.

Corollary 3.14. Solution to Hilbert’s 17th problem. Given

p ∈ R[x], if p ≥ 0 on Rn, then p =
∑

j

(
aj

bj

)2

for some aj , bj ∈ R[x].

Following Parrilo [103, 104], one may interpret the above results in
terms of certificates of infeasiblity of certain systems of polynomial systems
of equations and inequalities. First, observe that Hilbert’s Nullstellensatz
can be interpreted as follows: Either a system of polynomial equations is
feasible, which can be certified by giving a common solution x; or it is
infeasible, which can be certified by giving a Nullstellensatz certificate of
the form 1 =

∑m
j=1 ujhj . Parrilo makes the analogy with Farkas’ lemma

for linear programming; indeed, given A ∈ Rm×n, b ∈ Rm, Farkas’ lemma
asserts that, either the linear system Ax ≤ b, x ≥ 0 has a solution, or it is
infeasible, which can be certified by giving a solution y to the alternative
system AT y ≥ 0, y ≥ 0, yT b < 0. (Cf. e.g. [128, §7.3]). This paradigm
extends to the real solutions of systems of polynomial inequalities and
equations, as the following reformulation of the Positivstellensatz (cf e.g.
[14]) shows.

Theorem 3.15. Let fr (r = 1, . . . , s), gl (l = 1, . . . , t), hj (j =
1, . . . , m) be polynomials in R[x]. Then one of the following holds.

(i) Either the system fr(x) 6= 0 (r = 1, . . . , s), gl(x) ≥ 0 (l = 1, . . . , t),
hj(x) = 0 (j = 1, . . . , m) has a solution in Rn.

(ii) Or
∏s

r=1 f2dr
r +

∑
J⊆{1,...,t} sJgJ +

∑m
j=1 ujhj = 0 for some dr ∈ N,

sJ , uj ∈ Σ.

Thus the Positivstellensatz can be seen as a generalization of Hilbert’s
Nullstellensatz and of Farkas’ lemma (for linear programming) and one can
search for bounded degree certificates that the system in Theorem 3.15 (i)
has no real solution, using semidefinite programming. See [103, 104] for
further discussion and references.

One may try to use the Positivstellensatz to approximate the optimiza-
tion problem (1.1). Namely, in view of Theorem 3.12 (i), one can replace
the condition ‘p−ρ > 0 on K’ in (3.5) by the condition ‘(p−ρ)f = 1+g for
some f, g ∈ T (g1, . . . , gm)’ and this remains a formulation for pmin. How-
ever, although membership in T (g1, . . . , gm) with bounded degrees can be
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formulated via a semidefinite program, this does not lead to a semidefinite
programming formulation for pmin because of the presence of the product
ρf where both ρ and f are variables. In the case when the semialge-
braic set K is compact one may instead use the following refinement of
the Positivstellensatz of Schmüdgen. (See [127, 130] for a more elementary
exposition of Schmüdgen’s result and [131] for degree bounds.)

Theorem 3.16 (Schmüdgen’s Positivstellensatz [126]). Let K
be as in (1.2) and assume that the semialgebraic set K in (1.2) is compact.
Given p ∈ R[x], if p > 0 on K, then p ∈ T (g1, . . . , gm).

This now leads to a hierarchy of semidefinite relaxations for pmin, as
the programs

sup ρ s.t. p − ρ =
∑

J⊆{1,...,m}

uJgJ with uJ ∈ Σ, deg(uJgJ) ≤ t

are semidefinite programs whose optimum values converge to pmin as t goes
to ∞. However, a drawback is that Schmüdgen’s representation involves
2m sums of squares, thus leading to possibly quite large semidefinite pro-
grams. As proposed by Lasserre [65], one may use the further refinement
of Schmüdgen’s Positivstellensatz proposed by Putinar [115], which holds
under some condition on the compact set K.

Putinar’s Positivstellensatz. Given polynomials g1, . . . , gm ∈ R[x],
the set

M(g1, . . . , gm) := {u0 +

m∑

j=1

ujgj | u0, uj ∈ Σ}, (3.14)

is called the quadratic module generated by g1, . . . , gm. (We use the boldface
letter M for a quadratic module M(g1, . . . , gm) to avoid confusion with a
moment matrix M(y).) Consider the condition

∃f ∈ M(g1, . . . , gm) s.t. {x ∈ Rn | f(x) ≥ 0} is a compact set. (3.15)

Obviously, (3.15) implies that K is compact, since K ⊆ {x | f(x) ≥ 0}
for any f ∈ M(g1, . . . , gm). Note also that (3.15) is an assumption on the
description of K, rather than on the set K itself. Condition (3.15) holds,
e.g., if the set {x ∈ Rn | gj(x) ≥ 0} is compact for one of the constraints
defining K. It also holds when the description of K contains a set of
polynomial equations h1 = 0, . . . , hm0 = 0 with a compact set of common
real roots. If an explicit ball of radius R is known containing K, then it
suffices to add the (redundant) constraint R2 −∑n

i=1 x2
i ≥ 0 in order to

obtain a description of K satisfying (3.15). More detailed information can
be found in [57, 114]; e.g. it is shown there that condition (3.15) holds
when m ≤ 2.
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As we now see the condition (3.15) admits several equivalent reformu-
lations. Consider the following conditions

∃N ∈ N for which N −
n∑

i=1

x2
i ∈ M(g1, . . . , gm), (3.16)

∀p ∈ R[x] ∃N ∈ N for which N ± p ∈ M(g1, . . . , gm), (3.17)

∃p1, . . . , ps ∈ R[x] s.t. pI ∈ M(g1, . . . , gm) ∀I ⊆ {1, . . . , s}
and {x ∈ Rn | p1(x) ≥ 0, . . . , ps(x) ≥ 0} is compact.

(3.18)

Here we set pI :=
∏

i∈I pi for I ⊆ {1, . . . , s}. One can easily verify the
equivalence of (3.16) and (3.17), and the equivalence with (3.18) follows
directly using Schmüdgen’s theorem (Theorem 3.16) as we now observe.

Lemma 3.17. The conditions (3.15), (3.16), (3.17), (3.18) are all
equivalent.

Proof. The implications (3.17) =⇒ (3.16) =⇒ (3.15) =⇒ (3.18) are
obvious. To derive the implication (3.18) =⇒ (3.17), apply Schmüdgen’s
theorem (Theorem 3.16) to the compact set K0 := {x ∈ Rn | p1(x) ≥
0, . . . , ps(x) ≥ 0}. Given p ∈ R[x], there exists N > 0 for which N ± p > 0
on K0. Now Theorem 3.16 implies that N ± p =

∑
I⊆{1,...,s} sIpI for

some sI ∈ Σ. As each pI ∈ M(g1, . . . , gm), this shows that N ± p ∈
M(g1, . . . , gm).

Definition 3.18. Given g1, . . . , gm ∈ R[x], the quadratic module
M(g1, . . . , gm) is said to be Archimedean when the condition (3.17) holds.

Example 3.19. For the polynomials gi := xi − 1/2 (i = 1, . . . , n) and
gn+1 := 1−∏n

i=1 xi, the module M(g1, . . . , gn+1) is not Archimedean [114,
Ex. 6.3.1]. To see it, consider a lexicographic monomial ordering on R[x]
and define the set M of polynomials p ∈ R[x] satisfying p = 0, or p 6= 0
whose leading term pαxα satisfies either pα > 0 and α 6= (1, . . . , 1) mod 2,
or pα < 0 and α = (1, . . . , 1) mod 2. Then M is a quadratic module
(cf. Definition 3.27) and g1, . . . , gn+1 ∈ M , implying M(g1, . . . , gn+1) ⊆
M . For any N ∈ R, the polynomial N − ∑n

i=1 x2
i does not lie in M ,

which implies that it also does not lie in M(g1, . . . , gn+1). This shows that
M(g1, . . . , gn+1) is not Archimedean.

Theorem 3.20. (Putinar [115]; see also Jacobi and Prestel [57]). Let
K be as in (1.2) and assume that the quadratic modume M(g1, . . . , gm) is
Archimedean. For p ∈ R[x], if p > 0 on K then p ∈ M(g1, . . . , gm).

As noted by Lasserre [65], this implies directly the asymptotic conver-
gence to pmin of the hierarchy of bounds from (3.8). We will come back
to this hierarchy in Section 6. We refer to Nie and Schweighofer [100] for
degree bounds in representations in M(g1, . . . , gm). We present a proof of
Theorem 3.20 in Section 3.7.
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Some other representation results. Several other representation
results for positive polynomials exist in the literature. Let us just briefly
mention a few.

Theorem 3.21. (Pólya [108]; see [109] for a proof). Let p ∈ R[x] be a
homogeneous polynomial. If p > 0 on the simplex {x ∈ Rn

+ |∑n
i=1 xi = 1},

then there exists r ∈ N for which the polynomial (
∑n

i=1 xi)
rp has all its

coefficients nonnegative.

Theorem 3.22. (Reznick [119]) Let p ∈ R[x] be a homogeneous poly-
nomial. If p > 0 on Rn \ {0}, then there exists r ∈ N for which the
polynomial (

∑n
i=1 x2

i )
rp is a sum of squares.

Example 3.23. Consider the 5 × 5 symmetric matrix whose entries
are all equal to 1 except M1,2 = M2,3 = M3,4 = M4,5 = M5,1 = −1 and

let pM :=
∑5

i,j=1 Mi,jx
2
i x

2
j . Recall from Section 1.1 that M is copositive

precisely when pM is nonnegative. Parrilo [103] proved that, while pM is

not a SOS, (
∑5

i=1 x2
i )pM is a SOS, which shows that pM is nonnegative

and thus M is copositive.

As an illustration let us briefly sketch how Pólya’s theorem can be used
to derive a hierarchy of SOS approximations for the stable set problem. See
e.g. [31] for further applications, and [30] for a comparison of the hierarchies
based on Putinar’s and Pólya’s theorems.

Example 3.24. Consider the stable set problem introduced in Section
1.1 and the formulation (1.7) for α(G). For t ∈ N define the polynomial
pG,t :=

∑
i,j∈V x2

i x
2
j(t(I + AG) − J)i,j . For r ∈ N, the parameters

inf t s.t.
(∑

i∈V

x2
i

)r

pG,t is SOS

provide a hierarchy of upper bounds for α(G). Based on an analysis of
Pólya’s theorem, de Klerk and Pasechnik [32] proved the finite convergence
to α(G) and they conjecture that finite convergence takes place at r =
α(G) − 1. (See [46] for partial results, also for a comparison of the above
parameter with the approximation of α(G) derived via Putinar’s theorem,
mentioned in Example 8.16).

One can also search for a different type of certificate for positivity of a
polynomial p over K defined by polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0;
namely of the form

p =
∑

β∈Nm

cβ

m∏

j=1

g
βj

j with finitely many nonzero cβ ∈ R+. (3.19)

On the moment side this corresponds to Hausdorff-type moment conditions,
and this yields hierarchies of linear programming relaxations for polynomial
optimization. Sherali and Adams [137] use this type of representation for



SUMS OF SQUARES, MOMENTS AND POLYNOMIAL OPTIMIZATION 33

0/1 polynomial optimization problems. As an example let us mention Han-
delman’s characterization for positivity over a polytope.

Theorem 3.25. (Handelman [49]) let p ∈ R[x] and let K = {x ∈ Rn |
g1(x) ≥ 0, . . . , gm(x) ≥ 0} be a polytope, i.e. the gj’s are linear polynomials
and K is bounded. If p > 0 on K then p has a decomposition (3.19).

The following result holds for a general compact semialgebraic set K,
leading to a hierarchy of LP relaxations for problem (1.1). We refer to
Lasserre [68, 70] for a detailed discussion and comparison with the SDP
based approach.

Theorem 3.26. [35, 36] Assume K is compact and the polynomials
g1, . . . , gm satisfy 0 ≤ gj ≤ 1 on K ∀j and, together with the constant
polynomial 1, they generate the algebra R[x], i.e. R[x] = R[1, g1, . . . , gm].
Then any p ∈ R[x] positive on K has a representation of the form

p =
∑

α,β∈Nn

cαβ

m∏

j=1

g
αj

j

m∏

j=1

(1 − gj)
βj

for finitely many nonnegative scalars cαβ.

3.7. Proof of Putinar’s theorem. Schweighofer [132] gave a proof
for Theorem 3.20 which is more elementary than Putinar’s original proof
and uses only Pólya’s theorem (Theorem 3.21). Later M. Schweighofer
communicated to us an even shorter and simpler proof which is just a com-
bination of classical ideas from real algebraic geometry with an ingeneous
argument of Marshall (in Claim 3.32).

Definition 3.27. Call a set M ⊆ R[x] a quadratic module if it
contains 1 and is closed under addition and multiplication with squares,
i.e., 1 ∈ M , M + M ⊆ M and ΣM ⊆ M . Call a quadratic module M
proper if −1 /∈ M (i.e. M 6= R[x]).

Given g1, . . . , gm ∈ R[x] the set M(g1, . . . , gm) introduced in (3.14)
is obviously a quadratic module. We begin with some preliminary results
about quadratic modules.

Lemma 3.28. If M ⊆ R[x] is a quadratic module, then I := M ∩−M
is an ideal.

Proof. For f ∈ R[x] and g ∈ I, fg =
(

f+1
2

)2

g −
(

f−1
2

)2

g ∈ I.

Lemma 3.29. Let M ⊆ R[x] be a maximal proper quadratic module.
Then M ∪ −M = R[x].

Proof. Assume f ∈ R[x] \ (M ∪ −M). By maximality of M , the
quadratic modules M + fΣ and M − fΣ are not proper, i.e., we find
g1, g2 ∈ M and s1, s2 ∈ Σ such that −1 = g1 + s1f and −1 = g2 − s2f .
Multiplying the first equation by s2 and the second one by s1, we get
s1 + s2 + s1g2 + s2g1 = 0. This implies s1, s2 ∈ I := M ∩ −M . Since
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I is an ideal, we get s1f ∈ I ⊆ M and therefore −1 = g1 + s1f ∈ M , a
contradiction.

Lemma 3.30. Let M ⊆ R[x] be a maximal proper quadratic module
which is Archimedean, set I := M ∩ −M and let f ∈ R[x]. Then there is
exactly one a ∈ R such that f − a ∈ I.

Proof. Consider the sets

A := {a ∈ R | f − a ∈ M} and B := {b ∈ R | b − f ∈ M}.

As M is Archimedean, the sets A and B are not empty. We have to show
that A∩B is a singleton. Since M is proper, it does not contain any negative
real number. Therefore a ≤ b for all a ∈ A, b ∈ B. Set a0 := supA and
b0 := inf B. Thus a0 ≤ b0. Moreover, a0 = b0. Indeed if a0 < c < b0,
then f − c 6∈ M ∪ −M , which contradicts the fact that R[x] = M ∪ −M
(by Lemma 3.29). It suffices now to show that a0 ∈ A and b0 ∈ B, since
this will imply that A ∩ B = {a0} and thus conclude the proof. We show
that a0 = supA ∈ A. For this assume that a0 /∈ A, i.e., f − a0 /∈ M . Then
M ′ := M + (f − a0)Σ is a quadratic module that cannot be proper by the
maximality of M ; that is, −1 = g + (f − a0)s for some g ∈ M and s ∈ Σ.
As M is Archimedean we can choose N ∈ N such that N − s ∈ M and
ǫ ∈ R such that 0 < ǫ < 1

N . As a0− ǫ ∈ A, we have f − (a0− ǫ) ∈ M . Then
we have −1 + ǫs = g + (f − a0 + ǫ)s ∈ M and ǫN − ǫs ∈ M . Adding these
two equations, we get ǫN − 1 ∈ M which is impossible since ǫN − 1 < 0
and M is proper. One can prove that b0 ∈ B in the same way.

We now prove Theorem 3.20. Assume p ∈ R[x] is positive on K; we
show that p ∈ M(g1, . . . , gm). We state two intermediary results.

Claim 3.31. There exists s ∈ Σ such that sp ∈ 1 + M(g1, . . . , gm).

Proof. We have to prove that the quadratic module M0 :=
M(g1, . . . , gm) − pΣ is not proper. For this assume that M0 is proper;
we show the existence of a ∈ K for which p(a) ≤ 0, thus contradicting
the assumption p > 0 on K. By Zorn’s lemma, we can extend M0 to a
maximal proper quadratic module M ⊇ M0. As M ⊇ M(g1, . . . , gm), M
is Archimedean. Applying Lemma 3.30, there exists a ∈ Rn such that
xi − ai ∈ I := M ∩ −M for all i ∈ {1, . . . , n}. Since I is an ideal (by
Lemma 3.28), f − f(a) ∈ I for any f ∈ R[x]. In particular, for f = gj, we
find that gj(a) = gj − (gj − gj(a)) ∈ M since gj ∈ M(g1, . . . , gm) ⊆ M and
−(gj − gj(a)) ∈ M , which implies gj(a) ≥ 0. Therefore, a ∈ K. Finally,
−p(a) = (p − p(a)) − p ∈ M since p − p(a) ∈ I ⊆ M and −p ∈ M0 ⊆ M ,
which implies −p(a) ≥ 0.

Claim 3.32. There exist g ∈ M(g1, . . . , gm) and N ∈ N such that
N − g ∈ Σ and gp ∈ 1 + M(g1, . . . , gm).

Proof. (Marshall [90, 5.4.4]). Choose s as in Claim 3.31, i.e. s ∈ Σ
and sp − 1 ∈ M(g1, . . . , gm). Using (3.17), there exists k ∈ N such that
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2k − s, 2k − s2p − 1 ∈ M(g1, . . . , gm). Set g := s(2k − s) and N := k2.
Then g ∈ M(g1, . . . , gm), N − g = k2 − 2ks+ s2 = (k− s)2 ∈ Σ. Moreover,
gp − 1 = s(2k − s)p − 1 = 2k(sp − 1) + (2k − s2p − 1) ∈ M(g1, . . . , gm),
since sp − 1, 2k − s2p − 1 ∈ M(g1, . . . , gm).

We can now conclude the proof. Choose g, N as in Claim 3.32 and
k ∈ N such that k + p ∈ M(g1, . . . , gm). We may assume N > 0. Note that

(
k − 1

N

)
+ p =

1

N

(
(N − g)(k + p) + (gp − 1) + kg

)
∈ M(g1, . . . , gm).

Applying this iteratively we can make k = (kN) 1
N smaller and smaller

until reaching 0 and thus obtain p ∈ M(g1, . . . , gm). This concludes the
proof of Theorem 3.20.

3.8. The cone Σn,d of sums of squares is closed. As we saw
earlier, for d even, the inclusion Σn,d ⊆ Pn,d is strict except in the three
special cases (n, d) = (1, d), (n, 2), (2, 4). One may wonder how much
the two cones differ in the other cases. This question will be addressed in
Section 7.1, where we will mention a result of Blekherman (Theorem 7.1)
showing that, when the degree d is fixed and the number n of variables
grows, there are much more nonnegative polynomials than sums of squares.
On the other hand, one can show that any nonnegative polynomial is the
limit (coordinate-wise) of a sequence of SOS polynomials (cf. Theorem 7.3).
However, as the cone Σn,d is a closed set, the degrees of the polynomials
occurring in such sequence cannot be bounded. We now prove a more
general result which will imply that Σn,d is closed. Given polynomials
g1, . . . , gm ∈ R[x] and an integer t, set g0 := 1 and define the set

Mt(g1, . . . , gm) :=

{ m∑

j=0

sjgj | sj ∈ Σ, deg(sjgj) ≤ t (0≤j≤m)

}
, (3.20)

which can be seen as the “truncation at degree t” of the quadratic module
M(g1, . . . , gm). Let K be as in (1.2). Its interior int(K) (for the Euclidean
topology) consists of the points x ∈ K for which there exists a (full dimen-
sional) ball centered at x and contained in K. Obviously

K ′ := {x ∈ Rn | gj(x) > 0 ∀j = 1, . . . , m} ⊆ int(K).

The inclusion may be strict (e.g. 0 ∈ int(K)\K ′ for K = {x ∈ R | x2 ≥ 0}).
However,

int(K) 6= ∅ ⇐⇒ K ′ 6= ∅ (3.21)

assuming no gj is the zero polynomial. Indeed if K ′ = ∅ and B is a ball
contained in K, then the polynomial

∏m
j=1 gj vanishes on K and thus on B,

hence it must be the zero polynomial, a contradiction. The next result will
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also be used later in Section 6 to show the absence of duality gap between
the moment/SOS relaxations.

Theorem 3.33. [111, 132] If K has a nonempty interior then
Mt(g1, . . . , gm) is closed in R[x]t for any t ∈ N.

Proof. Note that deg(sjgj) ≤ t is equivalent to deg sj ≤ 2kj , setting
kj := ⌊(t−deg(gj))/2⌋. Set Λj := dim R[x]kj

= |Nn
kj
|. Then any polynomial

f ∈ Mt(g1, . . . , gm) is of the form f =
∑m

j=0 sjgj with sj =
∑Λj

lj=1(u
(j)
lj

)2

for some u
(j)
1 , . . . , u

(j)
Λj

∈ R[x]kj
. In other words, Mt(g1, . . . , gm) is the

image of the following map

ϕ : D := (R[x]k0 )
Λ0 × . . . × (R[x]km

)Λm → R[x]t

u =
(
(u

(0)
l0

)Λ0

l0=1, . . . , (u
(m)
lm

)Λm

lm=1

)
7→ ϕ(u) =

∑m
j=0

∑Λj

lj=1(u
(j)
lj

)2gj.

We may identify the domain D of ϕ with the space RΛ (of suitable dimen-
sion Λ); choose a norm on this space and let S denote the unit sphere in D.
Then V := ϕ(S) is a compact set in the space R[x]t, which is also equipped
with a norm. Note that any f ∈ Mt(g1, . . . , gm) is of the form f = λv for
some λ ∈ R+ and v ∈ V . We claim that 0 6∈ V . Indeed, by assumption,
int(K) 6= ∅ and thus, by (3.21), there exists a full dimensional ball B ⊆ K
such that each polynomial gj (j = 1, . . . , m) is positive on B. Hence, for
any u ∈ S, if ϕ(u) vanishes on B then each polynomial arising as compo-
nent of u vanishes on B, implying u = 0. This shows that ϕ(u) 6= 0 if u ∈ S,
i.e. 0 6∈ V . We now show that Mt(g1, . . . , gm) is closed. For this consider
a sequence fk ∈ Mt(g1, . . . , gm) (k ≥ 0) converging to a polynomial f ;
we show that f ∈ Mt(g1, . . . , gm). Write fk = λkvk where vk ∈ V and
λk ∈ R+. As V is compact there exists a subsequence of (vk)k≥0, again de-
noted as (vk)k≥0 for simplicity, converging say to v ∈ V . As 0 6∈ V , v 6= 0

and thus λk = ‖fk‖
‖vk‖

converges to ‖f‖
‖v‖ as k → ∞. Therefore, fk = λkvk

converges to ‖f‖
‖v‖v as k → ∞, which implies f = ‖f‖

‖v‖v ∈ Mt(g1, . . . , gm).

Corollary 3.34. The cone Σn,d is a closed cone.

Proof. Apply Theorem 3.33 to Md(g1) = Σn,d for g1 := 1.

When the set K has an empty interior one can prove an analogue of
Theorem 3.33 after factoring out through the vanishing ideal of K. More
precisely, with I(K) = {f ∈ R[x] | f(x) = 0 ∀x ∈ K}, consider the
mapping p ∈ R[x] 7→ p′ = p + I(K) ∈ R[x]/I(K) mapping any polynomial
to its coset in R[x]/I(K). Define the image under this mapping of the
quadratic module Mt(g1, . . . , gm)

M′
t(g1, . . . , gm) = {p′ | p ∈ Mt(g1, . . . , gm)} ⊆ R[x]t/I(K). (3.22)

Marshall [88] proved the following extension of Theorem 3.33. Note in-
deed that if K has a nonempty interior, then I(K) = {0} and thus
M′

t(g1, . . . , gm) = Mt(g1, . . . , gm).
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Theorem 3.35. [88] The set M′
t(g1, . . . , gm) is closed in R[x]t/I(K).

Proof. The proof is along the same lines as that of Theorem 3.33,
except one must now factor out through the ideal I(K). Set g0 := 1,
J := {j ∈ {0, 1, . . . , m} | gj 6∈ I(K)} and Ann(g) := {p ∈ R[x] | pg ∈
I(K)} for g ∈ R[x]. For j = 0, . . . , m, set kj := ⌊(t − deg(gj))/2⌋ (as in
the proof of Theorem 3.33), Aj := R[x]kj

∩ Ann(gj). Let Bj ⊆ R[x]kj
be

a set of monomials forming a basis of R[x]kj
/Aj ; that is, any polynomial

f ∈ R[x]kj
can be written in a unique way as p = r+q where r ∈ SpanR(Bj)

and q ∈ Aj . Let Λj := |Bj | = dim R[x]kj
/Aj . Consider the mapping

ϕ : D :=
∏

j∈J

(R[x]kj
/Aj)

Λj → R[x]t/I(K)

u = ((u
(j)
lj

mod Aj)
Λj

lj=1)j∈J 7→ ϕ(u) =
∑

j∈J

Λj∑

lj=1

(u
(j)
lj

)2gj mod I(K).

Note first that ϕ is well defined; indeed, u−v ∈ Aj implies (u−v)gj ∈ I(K)
and thus u2gj − v2gj = (u + v)(u − v)gj ∈ I(K). Next we claim that the
image of the domain D under ϕ is precisely the set M′

t(g1, . . . , gm). That is,

∀f ∈ Mt(g1, . . . , gm), ∃u ∈ D s.t. f −
∑

j∈J

Λj∑

lj=1

(u
(j)
lj

)2gj ∈ I(K). (3.23)

For this write f =
∑m

j=0 sjgj where sj ∈ Σ and deg(sj) ≤ t− deg(gj). Say

sj =
∑

hj
(a

(j)
hj

)2 where a
(j)
hj

∈ R[x]kj
. Write a

(j)
hj

= r
(j)
hj

+ q
(j)
hj

, where r
(j)
hj

∈
SpanR(Bj) and q

(j)
hj

∈ Aj . Then, sjgj =
∑

j∈J (
∑

hj
(r

(j)
hj

)2)gj mod I(K)

since q
(j)
hj

gj ∈ I(K) as q
(j)
hj

∈ Aj ⊆ Ann(gj). Moreover, as each r
(j)
hj

lies in SpanR(Bj) with |Bj | = Λj, by the Gram-matrix method (recall

Section 3.3), we deduce that
∑

hj
(r

(j)
hj

)2 can be written as another sum

of squares involving only Λj squares, i.e.
∑

hj
(r

(j)
hj

)2 =
∑Λj

lj=1(u
(j)
lj

)2 with

u
(j)
lj

∈ SpanR(Bj); this shows (3.23). We now show that ϕ−1(0) = 0. For

this assume that ϕ(u) = 0, i.e. f :=
∑Λj

lj=1(u
(j)
lj

)2gj ∈ I(K); we show that

u
(j)
lj

∈ Aj for all j, lj . Fix x ∈ K. Then f(x) = 0 and, as gj(x) ≥ 0 ∀j,

(u
(j)
lj

(x))2gj(x) = 0, i.e. u
(j)
lj

(x)gj(x) = 0 ∀j, lj . This shows that each

polynomial u
(j)
lj

gj lies in I(K), that is, u
(j)
lj

∈ Aj . We can now proceed as

in the proof of Theorem 3.33 to conclude that M ′
t(g1, . . . , gm) is a closed

set in R[x]t/I(K).

4. Moment sequences and moment matrices.

4.1. Some basic facts. We introduce here some basic definitions and
facts about measures, moment sequences and moment matrices.
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Moment sequences. Throughout we consider nonnegative Borel
measures on Rn; thus, when speaking of ‘a measure’, we implicitly as-
sume that it is nonnegative. A probability measure is a measure with total
mass µ(Rn) = 1.

Given a measure µ on Rn, its support supp(µ) is the smallest closed
set S ⊆ Rn for which µ(Rn \ S) = 0. We say that µ is a measure on K or
a measure supported by K ⊆ Rn if supp(µ) ⊆ K.

Given x ∈ Rn, δx denotes the Dirac measure at x, with support {x}
and having mass 1 at x and mass 0 elsewhere.

When the support of a measure µ is finite, say, supp(µ) = {x1, . . . , xr},
then µ is of the form µ =

∑r
i=1 λiδxi

for some λ1, . . . , λr > 0; the xi are
called the atoms of µ and one also says that µ is a r-atomic measure.

Given a measure µ on Rn, the quantity yα :=
∫

xαµ(dx) is called its
moment of order α. Then, the sequence (yα)α∈Nn is called the sequence
of moments of the measure µ and, given t ∈ N, the (truncated) sequence
(yα)α∈Nn

t
is called the sequence of moments of µ up to order t. When y is

the sequence of moments of a measure we also say that µ is a representing
measure for y. The sequence of moments of the Dirac measure δx is the
vector ζx := (xα)α∈Nn , called the Zeta vector of x (see the footnote on page
99 for a motivation). Given an integer t ≥ 1, ζt,x := (xα)α∈Nn

t
denotes the

truncated Zeta vector.

A basic problem in the theory of moments concerns the characteriza-
tion of (infinite or truncated) moment sequences, i.e., the characterization
of those sequences y = (yα)α that are the sequences of moments of some
measure. Given a subset K ⊆ Rn, the K-moment problem asks for the
characterization of those sequences that are sequences of moments of some
measure supported by the set K. This problem has received considerable
attention in the literature, especially in the case when K = Rn (the basic
moment problem) or when K is a compact semialgebraic set, and it turns
out to be related to our polynomial optimization problem, as we see be-
low in this section. For more information on the moment problem see e.g.
[8, 9, 23–26, 39, 63, 64, 115, 126] and references therein.

Moment matrices. The following notions of moment matrix and
shift operator play a central role in the moment problem. Given a sequence
y = (yα)α∈Nn ∈ RN

n

, its moment matrix is the (infinite) matrix M(y)
indexed by Nn, with (α, β)th entry yα+β , for α, β ∈ Nn. Similarly, given an
integer t ≥ 1 and a (truncated) sequence y = (yα)α∈Nn

2t
∈ RN

n
2t , its moment

matrix of order t is the matrix Mt(y) indexed by Nn
t , with (α, β)th entry

yα+β , for α, β ∈ Nn
t .

Given g ∈ R[x] and y ∈ RN
n

, define the new sequence

gy := M(y)g ∈ RN
n

, (4.1)

called shifted vector, with αth entry (gy)α :=
∑

β gβyα+β for α ∈ Nn. The
notation gy will also be used for denoting the truncated vector ((gy)α)α∈Nn

t
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of RN
n
t for an integer t ≥ 1. The moment matrices of gy are also known as

the localizing matrices, since they can be used to “localize” the support of
a representing measure for y.

Moment matrices and bilinear forms on R[x]. Given y ∈ RN
n

,
define the linear form Ly ∈ (R[x])∗ by

Ly(f) := yT vec(f) =
∑

α

yαfα for f =
∑

α

fαxα ∈ R[x]. (4.2)

We will often use the following simple ‘calculus’ involving moment matrices.

Lemma 4.1. Let y ∈ RN
n

, Ly ∈ (R[x])∗ the associated linear form
from (4.2), and let f, g, h ∈ R[x].

(i) Ly(fg) = vec(f)T M(y)vec(g); in particular, Ly(f
2) =

vec(f)T M(y)vec(f), Ly(f) = vec(1)T M(y)vec(f).
(ii) Ly(fgh) = vec(f)T M(y)vec(gh) = vec(fg)T M(y)vec(h) =

vec(f)T M(hy)vec(g).

Proof. (i) Setting f =
∑

α fαxα, g =
∑

β gβxβ , we have fg =∑
γ(
∑

α,β|α+β=γ fαgβ)xγ . Then Ly(fg) =
∑

γ yγ(
∑

α,β|α+β=γ fαgβ),

while vec(f)T M(y)vec(g) =
∑

α

∑
β fαgβyα+β , thus equal to Ly(fg). The

last part of (i) follows directly.
(ii) By (i) vec(f)T M(y)vec(gh) = vec(fg)T M(y)vec(h) = Ly(fgh), in
turn equal to

∑
α,β,γ fαgβhγyα+β+γ . Finally, vec(f)T M(hy)vec(g) =∑

δ(hy)δ(fg)δ =
∑

δ(
∑

γ hγyγ+δ)(
∑

α,β|α+β=δ fαgβ) which, by exchanging

the summations, is equal to
∑

α,β,γ fαgβhγyα+β+γ = Ly(fgh).

Given y ∈ RN
n

, we can also define the bilinear form on R[x]

(f, g) ∈ R[x] × R[x] 7→ Ly(fg) = vec(f)T M(y)vec(g),

whose associated quadratic form

f ∈ R[x] 7→ Ly(f
2) = vec(f)T M(y)vec(f)

is positive semidefinite, i.e. Ly(f2) ≥ 0 for all f ∈ R[x], precisely when the
moment matrix M(y) is positive semidefinite.

Necessary conditions for moment sequences. The next lemma
gives some easy well known necessary conditions for moment sequences.

Lemma 4.2. Let g ∈ R[x] and dg = ⌈deg(g)/2⌉.
(i) If y ∈ RN

n
2t is the sequence of moments (up to order 2t) of a measure

µ, then Mt(y) � 0 and rankMt(y) ≤ | supp(µ)|. Moreover, for p ∈
R[x]t, Mt(y)p = 0 implies supp(µ) ⊆ VR(p) = {x ∈ Rn | p(x) = 0}.
Therefore, supp(µ) ⊆ VR(KerMt(y)).

(ii) If y ∈ RN
n
2t (t ≥ dg) is the sequence of moments of a measure µ

supported by the set {x ∈ Rn | g(x) ≥ 0}, then Mt−dg
(gy) � 0.
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(iii) If y ∈ RN
n

is the sequence of moments of a measure µ, then M(y) � 0.
Moreover, if supp(µ) ⊆ {x ∈ Rn | g(x) ≥ 0}, then M(gy) � 0 and, if
µ is r-atomic, then rank M(y) = r.

Proof. (i) For p ∈ R[x]t, pT Mt(y)p is equal to

∑

α,β∈Nn
t

pαpβyα+β =
∑

α,β∈Nn
t

pαpβ

∫
xα+βµ(dx) =

∫
p(x)2µ(dx) ≥ 0,

which shows that Mt(y) � 0. If Mt(y)p = 0, then 0 = pT Mt(y)p =∫
p(x)2µ(dx). This implies that the support of µ is contained in the set

VR(p) of real zeros of p. [To see it, note that, as VR(p) is a closed set,
supp(µ) ⊆ VR(p) holds if we can show that µ(Rn \ VR(p)) = 0. Indeed,
Rn \ VR(p) =

⋃
k≥0 Uk, setting Uk := {x ∈ Rn | p(x)2 ≥ 1

k} for positive

k ∈ N. As 0 =
∫

p(x)2µ(dx) =
∫

Rn\VR(p)
p(x)2µ(dx) ≥

∫
Uk

p(x)2µ(dx) ≥
1
kµ(Uk), this implies µ(Uk) = 0 for all k and thus µ(Rn \ VR(p)) = 0.] The
inequality rankMt(y) ≤ | supp(µ)| is trivial if µ has an infinite support. So
assume that µ is r-atomic, say, µ =

∑r
i=1 λiδxi

where λ1, . . . , λr > 0 and
x1, . . . , xr ∈ Rn. Then, Mt(y) =

∑r
i=1 λiζt,xi

(ζt,xi
)T , which shows that

rank Mt(y) ≤ r.
(ii) For p ∈ R[x]t−dg

, pT Mt−dg
(gy)p is equal to

∑

α,β∈Nn
t−dg

∑

γ∈Nn

pαpβgγyα+β+γ =

∫

K

g(x)p(x)2µ(dx) ≥ 0,

which shows that Mt−dg
(gy) � 0.

(iii) The first two claims follow directly from (i), (ii). Assume now µ =∑r
i=1 λiδxi

where λi > 0 and x1, . . . , xr are distinct points of Rn. One
can easily verify that the vectors ζxi

(i = 1, . . . , r) are linearly independent
(using, e.g., the existence of interpolation polynomials at x1, . . . , xr; see
Lemma 2.3). Then, as M(y) =

∑r
i=1 λiζxi

ζT
xi

, rankM(y) = r.

Note that the inclusion supp(µ) ⊆ VR(KerMt(y)) from Lemma 4.2
(i) may be strict in general; see Fialkow [38] for such an example. On
the other hand, we will show in Theorem 5.19 that when Mt(y) � 0 with
rankMt(y) = rankMt−1(y), then equality supp(µ) = VR(KerMt(y)) holds.
The next result follows directly from Lemma 4.2; dK was defined in (1.10).

Corollary 4.3. If y ∈ RN
n
2t is the sequence of moments (up to order

2t) of a measure supported by the set K then, for any t ≥ dK ,

Mt(y) � 0, Mt−dgj
(gjy) � 0 (j = 1, . . . , m). (4.3)

We will discuss in Section 5 several results of Curto and Fialkow show-
ing that, under certain restrictions on the rank of the matrix Mt(y), the
condition (4.3) is sufficient for ensuring that y is the sequence of moments
of a measure supported by K. Next we indicate how the above results lead
to the moment relaxations for the polynomial optimization problem.
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4.2. Moment relaxations for polynomial optimization.
Lasserre [65] proposed the following strategy to approximate the problem
(1.1). First observe that

pmin := inf
x∈K

p(x) = inf
µ

∫

K

p(x)µ(dx)

where the second infimum is taken over all probability measures µ on Rn

supported by the set K. Indeed, for any x0 ∈ K, p(x0) =
∫

p(x)µ(dx) for
the Dirac measure µ := δx0 , showing pmin ≥ infµ

∫
p(x)µ(dx). Conversely,

as p(x) ≥ pmin for all x ∈ K,
∫

K
p(x)µ(dx) ≥

∫
K

pminµ(dx) = pmin, since µ
is a probability measure. Next note that

∫
p(x)µ(dx) =

∑
α pα

∫
xαµ(dx) =

pT y, where y = (
∫

xαµ(dx))α denotes the sequence of moments of µ. There-
fore, pmin can be reformulated as

pmin = inf pT y s.t. y0 = 1, y has a representing measure on K. (4.4)

Following Lemma 4.2 one may instead require in (4.4) the weaker conditions
M(y) � 0 and M(gjy) � 0 ∀j, which leads to the following lower bound
for pmin

pmom := inf
y∈RNn

pT y s.t. y0 = 1, M(y) � 0, M(gjy) � 0 (1≤j≤m)

= inf
L∈(R[x])∗

L(p) s.t. L(1) = 1, L(f) ≥ 0 ∀f ∈ M(g1, . . . , gm).
(4.5)

The equivalence between the two formulations in (4.5) follows directly using
the correspondence (4.2) between RN

n

and linear functionals on R[x], and
Lemma 4.1 which implies

M(y) � 0, M(gjy) � 0 ∀j ≤ m ⇐⇒ Ly(f) ≥ 0 ∀f ∈ M(g1, . . . , gm). (4.6)

It is not clear how to compute the bound pmom since the program (4.5)
involves infinite matrices. To obtain a semidefinite program we consider
instead truncated moment matrices in (4.5), which leads to the following
hierarchy of lower bounds for pmin

pmom
t = inf

L∈(R[x]2t)∗
L(p) s.t. L(1) = 1,

L(f) ≥ 0 ∀f ∈ M2t(g1, . . . , gm)

= inf
y∈R

Nn
2t

pT y s.t. y0 = 1, Mt(y) � 0,

Mt−dgj
(gjy) � 0 (j = 1, . . . , m)

(4.7)

for t ≥ max(dp, dK). The equivalence between the two formulations in
(4.7) follows from the truncated analogue of (4.6):

Mt(y) � 0, Mt−dj
(gjy) � 0 ∀j ≤ m ⇐⇒ Ly(f) ≥ 0 ∀f ∈ M2t(g1, . . . , gm).
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Thus pmom
t can be computed via a semidefinite program involving matrices

of size |Nn
t |. Obviously, pmom

t ≤ pmom
t+1 ≤ pmom ≤ pmin. Moreover,

psos
t ≤ pmom

t ; (4.8)

indeed if p−ρ ∈ M2t(g1, . . . , gm) and L is feasible for (4.7) then L(p)−ρ =
L(p − ρ) ≥ 0. Therefore, psos ≤ pmom.

Lemma 4.4. If the set K has a nonempty interior, then the program
(4.7) is strictly feasible.

Proof. Let µ be a measure with supp(µ) = B where B is a ball
contained in K. (For instance, define µ by µ(A) := λ(A ∩ B) for any
Borel set A, where λ(·) is the Lebesgue measure on Rn.) Let y be the
sequence of moments of µ. Then, M(gjy) ≻ 0 for all j = 0, . . . , m, setting
g0 := 1. Positive semidefiniteness is obvious. If p ∈ KerM(gjy) then∫

B p(x)2gj(x)µ(dx) = 0, which implies B = supp(µ) ⊆ VR(gjp) and thus
p = 0.

In the next section we discuss in more detail the duality relationship
between sums of squares of polynomials and moment sequences. We will
come back to both SOS/moment hierarchies and their application to the
optimization problem (1.1) in Section 6.

4.3. The moment problem. The moment problem asks for the
characterization of the sequences y ∈ RN

n

having a representing measure;
the analogous problem can be posed for truncated sequences y ∈ RN

n
t (t ≥ 1

integer). This problem is intimately linked to the characterization of the
duals of the cone P of nonnegative polynomials (from (3.1)) and of the
cone Σ of sums of squares (from (3.2)).

Duality between sums of squares and moment sequences. For
an R-vector space A, A∗ denotes its dual vector space consisting of all
linear maps L : A → R. Any a ∈ A induces an element Λa ∈ (A∗)∗ by
setting Λa(L) := L(a) for L ∈ A∗; hence there is a natural homomorphism
from A to (A∗)∗, which is an isomorphism when A is finite dimensional.
Given a cone B ⊆ A, its dual cone is B∗ := {L ∈ A∗ | L(b) ≥ 0 ∀b ∈ B}.
There is again a natural homomorphism from B to (B∗)∗, which is an
isomorphism when A is finite dimensional and B is a closed convex cone.
Here we consider A = R[x] and the convex cones P , Σ ⊆ R[x], with dual
cones P∗ = {L ∈ (R[x])∗ | L(p) ≥ 0 ∀p ∈ P}, Σ∗ = {L ∈ (R[x])∗ |
L(p2) ≥ 0 ∀p ∈ R[x]}. As mentioned earlier, we may identify a polynomial
p =

∑
α pαxα with its sequence of coefficients vec(p) = (pα)α ∈ R∞, the set

of sequences in RN
n

with finitely many nonzero components; analogously we
may identify a linear form L ∈ (R[x])∗ with the sequence y := (L(xα))α ∈
RN

n

, so that L = Ly (recall (4.2)), i.e. L(p) =
∑

α pαyα = yT vec(p). In
other words, we identify R[x] with R∞ via p 7→ vec(p) and RN

n

with (R[x])∗

via y 7→ Ly. We now describe the duals of the cones P , Σ ⊆ R[x]. For this
consider the cones in RN

n
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M := {y ∈ RN
n | y has a representing measure}, (4.9)

M� := {y ∈ RN
n | M(y) � 0}. (4.10)

Proposition 4.5. The cones M and P (resp., M� and Σ) are dual
of each other. That is, P = M∗, M� = Σ∗, M = P∗, Σ = (M�)∗.

Proof. The first two equalities are easy. Indeed, if p ∈ P and
y ∈ M has a representing measure µ, then yT vec(p) =

∑
α pαyα =∑

α pα

∫
K

xαµ(dx) =
∫

p(x)µ(dx) ≥ 0, which shows the inclusions P ⊆ M∗

and M ⊆ P∗. The inclusion M∗ ⊆ P follows from the fact that, if p ∈ M∗

then, for any x ∈ Rn, p(x) = vec(p)T ζx ≥ 0 (since ζx = (xα)α ∈ M as it ad-
mits the Dirac measure δx as representing measure) and thus p ∈ P . Given
y ∈ RN

n

, M(y) � 0 if and only if vec(p)T M(y)vec(p) = yT vec(p2) ≥ 0
for all p ∈ R[x] (use Lemma 4.1), i.e. yT vec(f) ≥ 0 for all f ∈ Σ; this
shows M� = Σ∗ and thus the inclusion Σ ⊆ (M�)∗. The remaining two
inclusions P∗ ⊆ M and (M�)∗ ⊆ Σ are proved, respectively, by Haviland
[51] and by Berg, Christensen and Jensen [9].

Obviously, M ⊆ M� (by Lemma 4.2) and Σ ⊆ P . As we saw earlier,
the inclusion Σ ⊆ P holds at equality when n = 1 and it is strict for n ≥ 2.
Therefore, M = M� when n = 1 (this is Hamburger’s theorem) and the
inclusion M ⊆ M� is strict when n ≥ 2. There are however some classes
of sequences y for which the reverse implication

y ∈ M� =⇒ y ∈ M (4.11)

holds. Curto and Fialkow [23] show that this is the case when the matrix
M(y) has finite rank.

Theorem 4.6. [23] If M(y) � 0 and M(y) has finite rank r, then y
has a (unique) r-atomic representing measure.

We will come back to this result in Theorem 5.1 below. This result
plays in fact a crucial role in the application to polynomial optimization,
since it permits to give an optimality certificate for the semidefinite hierar-
chy based on moment matrices; see Section 6 for details. We next discuss
another class of sequences for which the implication (4.11) holds.

Bounded moment sequences. Berg, Christensen, and Ressel [10]
show that the implication (4.11) holds when the sequence y is bounded,
i.e., when there is a constant C > 0 for which |yα| ≤ C for all α ∈ Nn.
More generally, Berg and Maserick [11] show that (4.11) holds when y is
exponentially bounded1, i.e. when |yα| ≤ C0C

|α| for all α ∈ Nn, for some

1Our definition is equivalent to that of Berg and Maserick [11] who say that y is
exponentially bounded when |yα| ≤ C0σ(α) ∀α, for some C0 > 0 and some function,
called an absolute value, σ : Nn → R+ satisfying σ(0) = 1 and σ(α + β) ≤ σ(α)σ(β)
∀α, β ∈ Nn. Indeed, setting C := maxi=1,...,n σ(ei) we have σ(α) ≤ C|α| and, conversely,

the function α 7→ σ(α) := C|α| is an absolute value.
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constants C0, C > 0. The next result shows that a sequence y ∈ RN
n

has a representing measure supported by a compact set if and only if it is
exponentially bounded with M(y) � 0.

Theorem 4.7. [11] Let y ∈ RN
n

and C > 0. Then y has a representing
measure supported by the set K := [−C, C]n if and only if M(y) � 0 and
there is a constant C0 > 0 such that |yα| ≤ C0C

|α| for all α ∈ Nn.

The proof uses the following intermediary results.

Lemma 4.8. Assume M(y) � 0 and |yα| ≤ C0C
|α| for all α ∈ Nn, for

some constants C0, C > 0. Then |yα| ≤ y0C
|α| for all α ∈ Nn.

Proof. If y0 = 0 then y = 0 since M(y) � 0 and the lemma holds.
Assume y0 > 0. Rescaling y we may assume y0 = 1; we show |yα| ≤ C|α|

for all α. As M(y) � 0, we have y2
α ≤ y2α for all α. Then, |yα| ≤ (y2kα)1/2k

for any integer k ≥ 1 (easy induction) and thus |yα| ≤ (C0C
2k|α|)1/2k

=

C
1/2k

0 C|α|. Letting k go to ∞, we find |yα| ≤ C|α|.

Lemma 4.9. Given C > 0 and K = [−C, C]n, the set

S := {y ∈ RN
n | y0 = 1, M(y) � 0, |yα| ≤ C|α| ∀α ∈ Nn}

is a convex set whose extreme points are the Zeta vectors ζx = (xα)α∈Nn

for x ∈ K.

Proof. S is obviously convex. Let y be an extreme point of S. Fix
α0 ∈ Nn. Our first goal is to show

yα+α0 = yαyα0 ∀α ∈ Nn. (4.12)

For this, define the sequence y(ǫ) ∈ RN
n

by y
(ǫ)
α := C|α0|yα + ǫyα+α0 for

α ∈ Nn, for ǫ ∈ {±1}. Therefore, |y(ǫ)
α | ≤ C|α0|(1 + ǫ)C|α| ∀α. We now

show that M(y(ǫ)) � 0. Fix p ∈ R[x]; we have to show that

pT M(y(ǫ))p =
∑

γ,γ′

pγpγ′y
(ǫ)
γ+γ′ ≥ 0. (4.13)

For this, define the new sequence z := M(y)vec(p2) ∈ RN
n

with zα =∑
γ,γ′ pγpγ′yα+γ+γ′ for α ∈ Nn. Then, |zα| ≤ (

∑
γ,γ′ |pγpγ′ |C|γ|+|γ′|)C|α|

∀α. Moreover, M(z) � 0. Indeed, using the fact that z = M(y)vec(p2) =
gy for g := p2 (recall (4.1)) combined with Lemma 4.1, we find that
qT M(z)q = qT M(gy)q = vec(pq)T M(y)vec(pq) ≥ 0 for all q ∈ R[x]. Hence
Lemma 4.8 implies −z0C

|α| ≤ zα ≤ z0C
|α| ∀α; applying this to α = α0, we

get immediately relation (4.13). Therefore, M(y(ǫ)) � 0. Applying again

Lemma 4.8, we deduce that |y(ǫ)
α | ≤ y

(ǫ)
0 C|α| ∀α.

If y
(ǫ)
0 = 0 for some ǫ ∈ {±1}, then y(ǫ) = 0, which implies directly

(4.12). Assume now y
(ǫ)
0 > 0 for both ǫ = 1,−1. Then each y(ǫ)

y
(ǫ)
0

belongs to
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S and y =
y
(1)
0

2C|α0|

y(1)

y
(1)
0

+
y
(−1)
0

2C|α0|

y(−1)

y
(−1)
0

is a convex combination of two points

of S. As y is an extreme point of S, y ∈
{

y(1)

y
(1)
0

, y(−1)

y
(−1)
0

}
, which implies

again (4.12).
As relation (4.12) holds for all α0 ∈ Nn, setting x := (yei

)n
i=1, we find

that x ∈ K and yα = xα for all α, i.e. y = ζx.

Proof of Theorem 4.7. Assume that M(y) � 0 and |yα| ≤ C0C
|α| for

all α; we show that y has a representing measure supported by K. By
Lemma 4.8, |yα| ≤ y0C

|α| ∀α. If y0 = 0, y = 0 and we are done. Assume
y0 = 1 (else rescale y). Then y belongs to the convex set S introduced
in Lemma 4.9. By the Krein-Milman theorem, y is a convex combina-
tion of extreme points of S. That is, y =

∑m
j=1 λjζxj

where λj > 0 and

xj ∈ K. In other words, µ :=
∑m

j=1 λjδxj
is a representing measure for y

supported by K. Conversely, assume that y has a representing measure µ
supported by K. Set C := max(|xi| | x ∈ K, i = 1, . . . , n). Then |yα| ≤∫

K
|xα|µ(dx) ≤ maxx∈K |xα|µ(K) ≤ µ(K)C|α|, which concludes the proof

of Theorem 4.7.

4.4. The K-moment problem. We now consider the K-moment
problem where, as in (1.2), K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is a
semialgebraic set. Define the cones

MK := {y ∈ RN
n| y has a representing measure supported by K} (4.14)

Msch
� (g1, . . . , gm) := {y ∈ RN

n| M(gJy) � 0 ∀J ⊆ {1, . . . , m}}, (4.15)

Mput
� (g1, . . . , gm) := {y ∈ RN

n| M(y)�0, M(gjy)�0 (1≤j≤m)},(4.16)

setting g∅ := 1, gJ :=
∏

j∈J gj for J ⊆ {1, . . . , m}. (The indices ‘sch’ and
‘put’ refer respectively to Schmüdgen and to Putinar; see Theorems 4.10
and 4.11 below.) Define also the cone

PK := {p ∈ R[x] | p(x) ≥ 0 ∀x ∈ K}

and recall the definition of T (g1, . . . , gm) from (3.13) and M(g1, . . . , gm)
from (3.14). Obviously,

MK ⊆ Msch
� (g1, . . . , gm) ⊆ Mput

� (g1, . . . , gm),

M(g1, . . . , gm) ⊆ T (g1, . . . , gm) ⊆ PK .

One can verify that

PK = (MK)∗, Msch
� (g1, . . . , gm) = (T (g1, . . . , gm))∗,

Mput
� (g1, . . . , gm) = (M(g1, . . . , gm))∗

(the details are analogous to those for Proposition 4.5, using Lemma 4.1).
Moreover, MK = (PK)∗ (Haviland [51]). The following results give the
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counterparts of Theorems 3.16 and 3.20, respectively, for the ‘moment side’.
See e.g. [114] for a detailed treatment and background.

Theorem 4.10. (Schmüdgen [126]) If K is compact, then MK =
Msch

� (g1, . . . , gm). Moreover, every positive polynomial p on K (i.e. p > 0
on K) belongs to T (g1, . . . , gm).

Theorem 4.11. (Putinar [115]) Assume M(g1, . . . , gm) is
Archimedean. Then MK = Mput

� (g1, . . . , gm). Moreover, every positive
polynomial on K belongs to M(g1, . . . , gm).

Let us conclude this section with a few words about the proof technique
for Theorems 4.6, 4.10, 4.11. Assume y ∈ RN

n

satisfies M(y) � 0 and let
Ly be the corresponding linear map as in (4.2). The assumption M(y) � 0
means that Ly is nonnegative on the cone Σ. The kernel of M(y) can
be identified with the set I := {p ∈ R[x] | M(y)p = 0} which is an
ideal in R[x] (see Lemma 5.2) and the quotient space A := R[x]/I has
the structure of an algebra. One can define an inner product on A by
setting 〈p, q〉 := pT M(y)q = Ly(pq). In this way, A is a Hilbert space. For
i = 1, . . . , n, consider the multiplication operator mxi

: A −→ A defined
by mxi

(p) = xip mod I. Obviously, the operators mx1 , . . . , mxn
commute

pairwise. (See also Section 2.4.)
Under the assumption of Theorem 4.6, M(y) has a finite rank and

thus the Hilbert space A has a finite dimension. Curto and Fialkow [23]
use the spectral theorem and the Riesz representation theorem for proving
the existence of a representing measure for y. Consider now the case when
the assumptions of Schmüdgen’s theorem hold; that is, the operator Ly

is nonnegative on the cone T (g1, . . . , gm). As K is compact, there exists
ρ > 0 for which the polynomial ρ2 −∑n

i=1 x2
i is positive on K. Using

the Positivstellensatz, this implies that (ρ2 −∑n
i=1 x2

i )g = 1 + h for some
g, h ∈ T (g1, . . . , gm). Then, the main step in Schmüdgen’s proof consist of
showing that the operators mxi

are bounded; namely, 〈xip,xip〉 ≤ ρ2〈p, p〉
for all p ∈ R[x]. Then the existence of a representing measure µ for y follows
using the spectral theorem and Schmüdgen uses Weierstrass theorem for
proving that the support of µ is contained in K. This proof uses in an essen-
tial way functional analytic methods. Schweighofer [130] gives an alterna-
tive more elementary proof for Schmüdgen’s theorem, which uses only the
Positivstellensatz and Pólya’s theorem (Theorem 3.21); moreover, starting
from a certificate: (ρ2 −∑n

i=1 x2
i )g = 1 + h with g, h ∈ T (g1, . . . , gm) given

by the Positivstellensatz, he constructs explicitly a representation of a pos-
itive polynomial on K proving its membership in T (g1, . . . , gm). Recently
Schmüdgen [127] gives another proof for the ‘sum of squares’ part of his
theorem; after proving that the preordering T (g1, . . . , gm) is Archimedean
(using Stengle’s Positivstellensataz), his proof is short and quite elementary
(it uses the one-dimensional Hamburger moment problem and the approx-
imation of the square root function by polynomials). Schweighofer [132]
also gives an alternative elementary proof for Putinar’s theorem relying on
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Pólya’s theorem; we have presented a proof for the ‘sum of squares’ part of
Putinar’s theorem in Section 3.7. We will give in Section 5.1 an alternative
elementary proof for Theorem 4.6, based on the fact that KerM(y) is a
real radical ideal and using the Real Nullstellensatz.

5. More about moment matrices. We group here several results
about moment matrices, mostly from Curto and Fialkow [23–25], which
will have important applications to the optimization problem (1.1).

5.1. Finite rank moment matrices. We have seen in Lemma 4.2
(iii) that, if a sequence y ∈ RN

n

has a r-atomic representing measure, then
its moment matrix M(y) is positive semidefinite and its rank is equal to
r. Curto and Fialkow [23] show that the reverse implication holds. More
precisely, they show the following result, thus implying Theorem 4.6.

Theorem 5.1. [23] Let y ∈ RN
n

.
(i) If M(y) � 0 and M(y) has finite rank r, then y has a unique

representing measure µ. Moreover, µ is r-atomic and supp(µ) =
VC(KerM(y)) (⊆ Rn).

(ii) If y has a r-atomic representing measure, then M(y) � 0 and M(y)
has rank r.

Assertion (ii) is just Lemma 4.2 (iii). We now give a simple proof for
Theorem 5.1 (i) (taken from [80]), which uses an algebraic tool (the Real
Nullstellensatz) in place of the tools from functional analysis (the spectral
theorem and the Riesz representation theorem) used in the original proof
of Curto and Fialkow [23].

Recall that one says that ‘a polynomial f lies in the kernel of M(y)’
when M(y)f := M(y)vec(f) = 0, which permits to identify the kernel of
M(y) with a subset of R[x]. Making this identification enables us to claim
that ‘the kernel of M(y) is an ideal in R[x]’ (as observed by Curto and
Fialkow [23]) or, when M(y) � 0, that ‘the kernel is a radical ideal’ (as
observed by Laurent [80]) or even ’a real radical ideal’ (as observed by
Möller [91], or Scheiderer [124]). Moreover, linearly independent sets of
columns of M(y) correspond to linearly independent sets in the quotient
vector space R[x]/ KerM(y). These properties, which play a crucial role
in the proof, are reported in the next two lemmas.

Lemma 5.2. The kernel I := {p ∈ R[x] | M(y)p = 0} of a moment
matrix M(y) is an ideal in R[x]. Moreover, if M(y) � 0, then I is a real
radical ideal.

Proof. We apply Lemma 4.1. Assume f ∈ I and let g ∈ R[x]. For any
h ∈ R[x], vec(h)T M(y)vec(fg) = vec(hg)T M(y)vec(f) = 0, implying that
fg ∈ I. Assume now M(y) � 0. We show that I is real radical. In view of
Lemma 2.2, it suffices to show that, for any g1, . . . , gm ∈ R[x],

m∑

j=1

g2
j ∈ I =⇒ g1, . . . , gm ∈ I.



48 MONIQUE LAURENT

Indeed, if
∑m

j=1 g2
j ∈ I then 0 = vec(1)T M(y)vec(

∑m
j=1 g2

j ) =∑m
j=1 gT

j M(y)gj . As gT
j M(y)gj ≥ 0 since M(y) � 0, this implies 0 =

gT
j M(y)gj and thus gj ∈ I for all j.

Lemma 5.3. For B ⊆ Tn, B indexes a maximum linearly independent
set of columns of M(y) if and only if B is a basis of the quotient vector
space R[x]/ KerM(y).

Proof. Immediate verification.

Proof of Theorem 5.1(i). Assume M(y) � 0 and r := rank M(y) < ∞.
By Lemmas 5.2 and 5.3, the set I := KerM(y) is a real radical zero-
dimensional ideal in R[x]. Hence, using (2.1) and Theorem 2.6, VC(I) ⊆ Rn

and |VC(I)| = dim R[x]/I = r. Let pv ∈ R[x] (v ∈ VC(I)) be interpolation
polynomials at the points of VC(I). Setting λv := pT

v M(y)pv, we now claim
that the measure µ :=

∑
v∈VC(I) λvδv is the unique representing measure

for y.

Lemma 5.4. M(y) =
∑

v∈VC(I) λvζvζT
v .

Proof. Set N :=
∑

v∈VC(I) λvζvζ
T
v . We first show that pT

u M(y)pv =

pT
u Npv for all u, v ∈ VC(I). This identity is obvious if u = v. If u 6= v then

pT
u Npv = 0; on the other hand, pT

u M(y)pv = vec(1)T M(y)vec(pupv) = 0
where we use Lemma 4.1 for the first equality and the fact that pupv ∈
I(VC(I)) = I for the second equality. As the set {pv | v ∈ VC(I)} is a
basis of R[x]/I (by Lemma 2.5), we deduce that fT M(y)g = fT Ng for all
f, g ∈ R[x], implying M(y) = N .

Lemma 5.5. The measure µ =
∑

v∈VC(I) λvδv is r-atomic and it is
the unique representing measure for y.

Proof. µ is a representing measure for y by Lemma 5.4 and µ is r-
atomic since pT

v M(y)pv > 0 as pv 6∈ I for v ∈ VC(I). We now verify the
unicity of such measure. Say, µ′ is another representing measure for y.
By Lemma 4.2, r = rankM(y) ≤ r′ := | supp(µ′)|; moreover, supp(µ′) ⊆
VC(I), implying r′ ≤ |VC(I)| = r. Thus, r = r′, supp(µ′) = supp(µ) =
VC(I) and µ = µ′.

This concludes the proof of Theorem 5.1.

We now make an observation, which will be useful for the proof of
Theorem 5.23 below.

Lemma 5.6. Assume M(y) � 0 and r := rank M(y) < ∞. Set
I := KerM(y). If, for some integer t ≥ 1, rankMt(y) = r, then there exist
interpolation polynomials pv (v ∈ VC(I)) having degree at most t.

Proof. As rank Mt(y) = rank M(y), one can choose a basis B of
R[x]/I where B ⊆ Tn

t . (Recall Lemma 5.3.) Let qv (v ∈ VC(I)) be in-
terpolation polynomials at the points of VC(I). Replacing each qv by its
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residue pv modulo I w.r.t. the basis B, we obtain a new set of interpolation
polynomials pv (v ∈ VC(I)) with deg pv ≤ t.

We saw in Lemma 5.2 that the kernel of an infinite moment matrix is
an ideal in R[x]. We now observe that, although the kernel of a truncated
moment matrix cannot be claimed to be an ideal, it yet enjoys some ‘trun-
cated ideal like’ properties. We use the notion of flat extension of a matrix,
introduced earlier in Definition 1.1, as well as Lemma 1.2.

Lemma 5.7. Let f, g ∈ R[x].
(i) If deg(fg) ≤ t − 1 and Mt(y) � 0, then

f ∈ KerMt(y) =⇒ fg ∈ KerMt(y). (5.1)

(ii) If deg(fg) ≤ t and rankMt(y) = rankMt−1(y), then (5.1) holds.

Proof. It suffices to show the result for g = xi since the general result
follows from repeated applications of this special case. Then, h := fxi =∑

α fαxα+ei =
∑

α|α≥ei
fα−ei

xα. For α ∈ Nn
t−1, we have:

(Mt(y)h)α =
∑

γ

hγyα+γ =
∑

γ|γ≥ei

fγ−ei
yα+γ

=
∑

γ

fγyα+γ+ei
= (Mt(y)f)α+ei

= 0.

In view of Lemma 1.2, this implies Mt(y)h = 0 in both cases (i), (ii).

5.2. Finite atomic measures for truncated moment sequences.
Theorem 5.1 characterizes the infinite sequences having a finite atomic rep-
resenting measure. The next question is to characterize the truncated se-
quences y ∈ RN

n
2t having a finite atomic representing measure µ. It turns

out that, for a truncated sequence, the existence of a representing mea-
sure implies the existence of another one with a finite support (this is not
true for infinite sequences). This result, due to Bayer and Teichmann [7],
strengthens an earlier result of Putinar [116] which assumed the existence
of a measure with a compact support. We thank M. Schweighofer for sug-
gestions about Theorem 5.8 and its proof.

Theorem 5.8. [7] If a truncated sequence y ∈ RN
n
t has a representing

measure µ, then it has another representing measure ν which is finitely
atomic with at most

(
n+t

t

)
atoms. Moreover, if S ⊆ Rn is measurable with

µ(Rn \S) = 0, then one can choose ν such that supp(ν) ⊆ S. In particular,
one can choose ν with supp(ν) ⊆ supp(µ).

Proof. Let S ⊆ Rn be measurable with µ(Rn \ S) = 0. Let I ⊆
R[x] denote an ideal that is maximal with respect to the property that
µ(Rn \ (VR(I) ∩ S)) = 0 (such an ideal exists by assumption since R[x] is
Noetherian). Set S′ := VR(I) ∩ S; thus µ(Rn \ S′) = 0. We will in fact
construct ν with supp(ν) ⊆ S′. For this, let C ⊆ RN

n
t denote the convex
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cone generated by the vectors ζt,x = (xα)α∈Nn
t

for x ∈ S′. Then its closure

C is a closed convex cone in RN
n
t and therefore it is equal to the intersection

of its supporting halfspaces. That is,

C = {z ∈ RN
n
t | cT z ≥ 0 ∀c ∈ H}

for some H ⊆ RN
n
t . Obviously, y ∈ C since, for any c ∈ H ,

cT y =
∑

α

cαyα =

∫

S′

(
∑

α

cαxα)µ(dx) ≥ 0

as
∑

α cαxα = cT ζt,x ≥ 0 for all x ∈ S′. Moreover,

y belongs to the relative interior of C. (5.2)

Indeed, consider a supporting hyperplane {z | cT z = 0} (c ∈ H) that does
not contain C. We show that cT y > 0.

For this, assume cT y = 0 and set X := {x ∈ S′ | cT ζt,x > 0}, Xk :=
{x ∈ S′ | cT ζt,x ≥ 1

k} for k ≥ 1 integer. Then, X 6= ∅ and X =
⋃

k≥1 Xk.
We have

0 = cT y =

∫

X

cT ζt,xµ(dx) ≥
∫

Xk

cT ζt,xµ(dx) ≥ 1

k
µ(Xk) ≥ 0,

implying µ(Xk) = 0. This shows that µ(X) = 0. Now consider the poly-
nomial f :=

∑
α cαxα ∈ R[x]t and the ideal J := I + (f) ⊆ R[x]. Then,

VR(J ) = VR(I)∩ VR(f), VR(J )∩ S = S′ ∩ VR(f), X = S′ \ VR(f) and thus
Rn\(VR(J )∩S) = (Rn\S′)∪X has measure 0 since µ(Rn\S′) = µ(X) = 0.
This implies J = I by our maximality assumption on I, i.e., f ∈ I. Hence
f vanishes on VR(I) and thus on S′, contradicting the fact that X 6= ∅.

Therefore, (5.2) holds and thus y belongs to the cone C, since the
two cones C and its closure C have the same relative interior. Using
Carathéodory’s theorem, we deduce that y can be written as a conic com-
bination of at most |Nn

t | =
(
n+t

t

)
vectors ζt,x (x ∈ S′); that is, y has an

atomic representing measure on S′ ⊆ S with at most
(
n+t

t

)
atoms.

As an illustration, consider e.g. the case n = t = 1 and the uniform
measure µ on [−1, 1] with y = (2, 0) ∈ RN

1
1 . Theorem 5.8 tells us that there

is another representing measure ν for y with at most two atoms. Indeed,
the Dirac measure at the origin represents y, but if we exclude the origin
then we need two atoms to represent y. Finding alternative measures with
a small number of atoms is also known as the problem of finding cubature
(or quadrature) rules for measures. The next result is a direct consequence
of Theorem 5.8.

Corollary 5.9. For K ⊆ Rn and y ∈ RN
n
t , the following assertions

(i)-(iii) are equivalent: (i) y has a representing measure on K; (ii) y has an
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atomic representing measure on K; (iii) y =
∑N

i=1 λiδxi
for some λi > 0,

xi ∈ K.

We mentioned earlier in Section 4.3 the Riesz-Haviland theorem which
claims that an infinite sequence y ∈ RN

n

has a representing measure on
a closed subset K ⊆ Rn if and only if yT p ≥ 0 for all polynomials p
nonnegative on K; that is, MK = (PK)∗ in terms of conic duality. One
may naturally wonder whether there is an analogue of this result for the
truncated moment problem. For this, define

PK,t := {p ∈ R[x]t | p(x) ≥ 0 ∀x ∈ K}.

Obviously, MK,t ⊆ (PK,t)
∗; Tchakaloff [145] proved that equality holds

when K is compact.
Here is an example (taken from [26]) showing that the inclusion

MK,t ⊆ (PK,t)
∗ can be strict.

Example 5.10. Consider the sequence y := (1, 1, 1, 1, 2) ∈ RN
1
4 (here

n = 1). Thus,

M2(y) =




1 1 1
1 1 1
1 1 2


 � 0.

Hence y ∈ (P4)
∗ (since any univariate nonnegative polynomial is a sum

of squares). However y does not have a representing measure. Indeed,
if µ is a representing measure for y, then its support is contained in
VC(KerM2(y)) ⊆ {1} since the polynomial 1 − x lies in KerM2(y). But
then µ would be the Dirac measure δ1 which would imply y4 = 1, a con-
tradiction.

Curto and Fialkow [26] can however prove the following results. We
omit the proofs which use the Riesz representation theorem and a technical
result of [143] about limits of measures.

Theorem 5.11. [26, Th. 2.4] Let y ∈ RN
n
2t and let K be a closed

subset of Rn. If y ∈ (PK,2t)
∗, then the subsequence (yα)α∈Nn

2t−1
has a

representing measure on K.

Theorem 5.12. [26, Th. 2.2] Let y ∈ RN
n
2t and let K be a closed

subset of Rn. Then y has a representing measure on K if and only if y
admits an extension ỹ ∈ RN

n
2t+2 such that ỹ ∈ (PK,2t+2)

∗.

Note that Theorem 5.12 implies in fact the Riesz-Haviland theorem
MK = (PK)∗; to see it, use the following result of Stochel, which shows
that the truncated moment problem is in fact more general than the (infi-
nite) moment problem.

Theorem 5.13. [143, Th. 4] Let y ∈ RN
n

and let K ⊆ Rn be a closed
set. Then y has a representing measure on K if and only if, for each integer
t ≥ 1, the subsequence (yα)α∈Nn

t
has a representing measure on K.
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5.3. Flat extensions of moment matrices. The main result in
this section is Theorem 5.14 below, which provides a key result about flat
extensions of moment matrices. Indeed it permits to extend a truncated
sequence y ∈ RN

n
2t , satisfying some ‘flat extension’ assumption, to an in-

finite sequence ỹ ∈ RN
n

, satisfying rankM(ỹ) = rankMt(y). In this way
one can then apply the tools developed for infinite moment sequences (e.g.,
Theorem 5.1) to truncated sequences. Recall the notion of ‘flat extension’
from Definition 1.1.

Theorem 5.14. (Flat extension theorem [23]) Let y ∈ RN
n
2t . If

Mt(y) is a flat extension of Mt−1(y), then one can extend y to a (unique)
vector ỹ ∈ RN

n
2t+2 in such a way that Mt+1(ỹ) is a flat extension of Mt(y).

The rest of the section is devoted to the proof of Theorem 5.14. We
give in fact two proofs. While the first one is completely elementary with
some more technical details, the second one is less technical but uses some
properties of Gröbner bases.

First proof. We begin with a characterization of moment matrices,
which we will use in the proof.

Lemma 5.15. Let M be a symmetric matrix indexed by Nn
t . Then, M

is a moment matrix, i.e., M = Mt(y) for some sequence y ∈ RN
n
2t , if and

only if the following holds:
(i) Mα,β = Mα−ei,β+ei

for all α, β ∈ Nn
t , i ∈ {1, . . . , n} such that αi ≥ 1,

|β| ≤ t − 1.
(ii) Mα,β = Mα−ei+ej ,β+ei−ej

for all α, β ∈ Nn
t , i, j ∈ {1, . . . , n} such

that αi, βj ≥ 1, |α| = |β| = t.

Proof. The ‘if part’ being obvious, we show the ‘only if’ part. That
is, we assume that (i), (ii) hold and we show that M(α, β) = M(α′, β′)
whenever α + β = α′ + β′. For this we use induction on the parameter
δαβ,α′β′ := min(‖α−α′‖1, ‖β−β′‖1). If δαβ,α′β′ = 0, then (α, β) = (α′, β′)
and there is nothing to prove. If δαβ,α′β′ = 1, then the result holds by
assumption (i). Assume now that δαβ,α′β′ ≥ 2.

Consider first the case when |α| + |β| ≤ 2t − 1. As α 6= α′ we may
assume without loss of generality that α′

i ≥ αi + 1 for some i, implying
β′

i ≤ βi−1. Define (α′′, β′′) := (α−ei, β+ei). Then, δαβ,α′′β′′ = δαβ,α′β′−1.
If |β′| ≤ t − 1, then Mα,β = Mα′′,β′′ by the induction assumption and
Mα′′,β′′ = Mα′,β′ by (i), implying the desired result. Assume now that
|β′| = t and thus |α′| ≤ t − 1. Then, |α| − |α′| = t− |β| ≥ 0 and thus αi ≥
α′

i + 1 for some i, yielding β′
i ≥ βi + 1. Define (α′′, β′′) := (α′ + ei, β

′ − ei).
Then δαβ,α′′β′′ = δαβ,α′β′ − 1. Therefore, Mα,β = Mα′′,β′′ by the induction
assumption and Mα′′,β′′ = Mα′,β′ by (i), implying the desired result.

We can now suppose that |α| = |β| = |α′| = |β′| = t. Hence, α′
i ≥

αi + 1 for some i and β′
j ≥ βj + 1 for some j; moreover i 6= j. Define

(α′′, β′′) := (α′ − ei + ej , β
′ + ei − ej). Then, δαβ,α′′β′′ = δαβ,α′β′ − 2.

Therefore, Mα,β = Mα′′,β′′ by the induction assumption and Mα′′,β′′ =
Mα′,β′ by (ii), implying the desired result.
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Set Mt := Mt(y) =

(
A B

BT C

)
, where A := Mt−1(y). By assumption,

Mt is a flat extension of A. Our objective is to construct a flat extension

N :=

(
Mt D
DT E

)
of Mt, which is a moment matrix. As Mt is a flat ex-

tension of A, we can choose a subset B ⊆ Nn
t−1 indexing a maximum set

of linearly independent columns of Mt. Then any column of Mt can be
expressed (in a unique way) as a linear combination of columns indexed
by B. In other words, for any polynomial p ∈ R[x]t, there exists a unique
polynomial r ∈ SpanR(B) for which p − r ∈ KerMt.

Lemma 5.7 (ii) plays a central role in the construction of the matrix
N , i.e., of the matrices D and E. Take γ ∈ Nn

t+1 with |γ| = t + 1. Say,
γi ≥ 1 for some i = 1, . . . , n and xγ−ei − r ∈ KerMt, where r ∈ SpanR(B).
Then it follows from Lemma 5.7 (ii) that xi(x

γ−ei − r) belongs to the
kernel of N , the desired flat extension of Mt. In other words, Nvec(xγ) =
Nvec(xir), which tells us how to define the γth column of N , namely, by
Dvec(xγ) = Mtvec(xir) and Evec(xγ) = DT vec(xir). We now verify that
these definitions are good, i.e., that they do not depend on the choice of
the index i for which γi ≥ 1.

Lemma 5.16. Let γ ∈ Nn with |γ| = t + 1, γi, γj ≥ 1 and
let r, s ∈ SpanR(B) for which xγ−ei − r, xγ−ej − s ∈ KerMt. Then
we have Mtvec(xir − xjs) = 0 (implying that D is well defined) and
DT vec(xir − xjs) = 0 (implying that E is well defined).

Proof. We first show that Mtvec(xir−xjs) = 0. In view of Lemma 1.2
(ii), it suffices to show that vec(xα)T Mtvec(xir−xjs) = 0 for all α ∈ Nn

t−1.
Fix α ∈ Nn

t−1. Then,

vec(xα)T Mtvec(xir − xjs) = vec(xix
α)T Mtr − vec(xjx

α)T Mts

= vec(xix
α)T Mtvec(xγ−ei) − vec(xjx

α)T Mtvec(xγ−ej )

= yT vec(xix
αxγ−ei) − yT vec(xjx

αxγ−ej ) = 0,

where we have used the fact that r − xγ−ei , s − xγ−ej ∈ KerMt for the
second equality, and Lemma 4.1 for the third equality. We now show that
DT vec(xir−xjs) = 0, i.e., vec(xir−xjs)

T Dvec(xδ) = 0 for all |δ| = t+1.
Fix δ ∈ Nn

t+1. Say, δk ≥ 1 and xδ−ek − u ∈ KerMt, where u ∈ SpanR(B).
Then, Dvec(xδ) = Mtvec(xku) by construction. Using the above, this
implies vec(xir − xjs)

T Dvec(xδ) = vec(xir − xjs)
T Mtvec(xku) = 0.

We now verify that the matrix N is a moment matrix, i.e., that N
satisfies the conditions (i), (ii) from Lemma 5.15.

Lemma 5.17.
(i) Nγ,δ = Nγ+ei,δ−ei

for γ, δ ∈ Nn
t+1 with δi ≥ 1 and |γ| ≤ t.

(ii) Nγ,δ = Nγ−ej+ei,δ+ej−ei
for γ, δ ∈ Nn

t+1 with γj ≥ 1, δi ≥ 1, |γ| =
|δ| = t + 1.
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Proof. (i) Assume xδ−ei −r, xγ −s ∈ KerMt for some r, s ∈ SpanR(B);
then xδ − xir, xix

γ − xis ∈ KerN , by construction. We have

vec(xγ)T Nvec(xδ) = vec(xγ)T Nvec(xir) = vec(xγ)T Mtvec(xir)

= sT Mtvec(xir) = vec(xis)
T Mtr = vec(xis)

T Mtvec(xδ−ei )

= vec(xis)
T Nvec(xδ−ei ) = vec(xix

γ)T Nvec(xδ−ei ).

This shows Nγ,δ = Nγ+ei,δ−ei
.

(ii) Let r, s ∈ SpanR(B) for which xδ−ei − r,xγ−ej − s ∈ KerMt. Then,
xδ −xir, xjx

δ−ei −xjr, xγ −xjs, xix
γ−ej −xis ∈ KerN by construction.

We have

vec(xγ)T Nvec(xδ) = vec(xjs)
T Nvec(xir) = vec(xjs)

T Mtvec(xir)

= vec(xis)
T Mtvec(xjr) = vec(xis)

T Nvec(xjr)

= vec(xγ−ej+ei)T Nvec(xδ−ei+ej ),

which shows Nγ,δ = Nγ−ej+ei,δ+ej−ei
.

This concludes the first proof of Theorem 5.14.

Second proof. The following proof of Theorem 5.14 is from
Schweighofer [134]; it is less technical than the proof just presented, but
uses some basic knowledge about Gröbner bases. (Cf. e.g. [21] for the
undefined notions used in the proof below.)

Lemma 5.18. Suppose y ∈ Nn
2t and Mt(y) is a flat extension of

Mt−1(y). Then

U := {f ∈ R[x]2t | yT (fg) = 0 for all g ∈ R[x] with fg ∈ R[x]2t}

is a linear subspace of R[x]2t with

U ∩ R[x]t = KerMt(y) and (5.3)

fg ∈ U for all f ∈ U and g ∈ R[x] with fg ∈ R[x]2t. (5.4)

For every fixed total degree monomial ordering, there exists a Gröbner basis
G of the ideal I := (KerMt(y)) ⊆ R[x] such that G ⊆ KerMt(y). In
particular,

KerMt(y) = I ∩ R[x]t ⊆ I ∩ R[x]2t ⊆ U. (5.5)

Proof. To prove (5.3), we fix f ∈ R[x]t. Suppose first that f ∈ U . By
Lemma 4.1 and the definition of U , we have gT Mt(y)f = yT vec(fg) = 0 for
all g ∈ R[x]t. Hence f ∈ KerMt(y). Conversely, suppose now Mt(y)f = 0
and f 6= 0. For every α ∈ Nn with |α| + deg(f) ≤ 2t, we can write xα =
xβxγ with xβ ,xγf ∈ R[x]t. By Lemma 5.7(ii), we get xγf ∈ KerMt(y)
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and therefore yT vec(fxα) = vec(xβ)T Mt(y)vec(xγf) = 0 as desired. (5.4)
is clear from the definition of U .

Take a finite set F of polynomials that generates KerMt(y) as a vector
space and contains for each α ∈ Nn

t a polynomial of the form xα − p with
p ∈ R[x]t−1. Using the Buchberger algorithm, one can complete F to a
Gröbner basis G of the ideal I. We claim that all polynomials in G still lie
in KerMt(y), provided one uses a total degree monomial ordering. Indeed,
every S-polynomial of two polynomials in KerMt(y) lies in U by (5.3) and
(5.4). In the Buchberger algorithm, such an S-polynomial will be reduced
by F to a polynomial of degree at most t. Since F ⊆ U , this reduced
S-polynomial will again lie in U by (5.4). Hence all polynomials added to
F by the Buchberger algorithm lie in U ∩R[x]t = KerMt(y) by (5.3). This
shows that we find G ⊆ KerMt(y).

It remains only to show that I ∩ R[x]2t ⊆ U , since this will imply
I ∩ R[x]t ⊆ KerMt(y) by (5.3). We use the Gröbner basis G to show this.
Let f ∈ I ∩ R[x]2t be given, f 6= 0. The division algorithm described on
page 16 yields f =

∑
g∈G ugg where ug ∈ R[x] and deg(ugg) ≤ deg(f) ≤ 2t

for all g ∈ G. By (5.4), we have ugg ∈ U for all g ∈ G. Hence f ∈ U .

Now we can conclude the second proof of Theorem 5.14. In fact, we
will extend the given vector y ∈ Nn

2t all at once to an infinite vector ỹ ∈ Nn

such that the infinite moment matrix M(ỹ) is a flat extension of Mt(y).
For α ∈ Nn, we define ỹα := yT p(α), where p(α) ∈ R[x]t is chosen such that
xα − p(α) ∈ I = (Ker Mt(y)). This is well defined since such p(α) exists
and, for p, q ∈ R[x]t with xα−p,xα−q ∈ I, we have p−q ∈ I ∩R[x]t ⊆ U ,
giving yT p = yT q. Observe first that

ỹα = yα ∀α ∈ Nn
2t. (5.6)

Indeed, for |α| ≤ 2t, ỹα − yα = yT vec(p(α) − xα) = 0 since p(α) − xα ∈
I ∩ R[x]2t ⊆ U (by Lemma 5.18). Next observe that

ỹT q = 0 ∀q ∈ I. (5.7)

For this, let q =
∑

α qαxα ∈ I. Then, ỹT q =
∑

α qαỹα =
∑

α qαyT p(α) =
yT (
∑

α qαp(α)). As the polynomial
∑

α qαp(α) =
∑

α qα(p(α) − xα) + q lies
in R[x]t∩I ⊆ U , we find ỹT q = 0, thus showing (5.7). From (5.7) we derive
that I ⊆ KerM(ỹ). We now verify that M(ỹ) is a flat extension of Mt(y).
Indeed, for α ∈ Nn, we have M(ỹ)vec(xα) = M(ỹ)vec(xα − p(α) + p(α)) =
M(ỹ)vec(p(α)), since xα − p(α) ∈ I. This shows that all columns of M(ỹ)
are linear combinations of the columns indexed by Nn

t , i.e. M(ỹ) is a flat
extension of Mt(ỹ) and thus of Mt(y) (by (5.6)). This concludes the second
proof of Theorem 5.14.

5.4. Flat extensions and representing measures. We group here
several results about the truncated moment problem. The first result from
Theorem 5.19 essentially follows from the flat extension theorem (Theorem
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5.14) combined with Theorem 5.1 about finite rank (infinite) moment ma-
trices. This result is in fact the main ingredient that will be used for the
extraction procedure of global minimizers in the polynomial optimization
problem (see Section 6.7).

Theorem 5.19. Let y ∈ RN
n
2t for which Mt(y) � 0 and rankMt(y) =

rankMt−1(y). Then y can be extended to a (unique) vector ỹ ∈ RN
n

sat-
isfying M(ỹ) � 0, rankM(ỹ) = rankMt(y), and KerM(ỹ) = (KerMt(y)),
the ideal generated by KerMt(y). Moreover, any set B ⊆ Tn

t−1 index-
ing a maximum nonsingular principal submatrix of Mt−1(y) is a basis of
R[x]/(KerMt(y)). Finally, ỹ, and thus y, has a (unique) representing mea-
sure µ, which is r-atomic with supp(µ) = VC(KerMt(y)).

Proof. Applying iteratively Theorem 5.14 we find an extension ỹ ∈ RN
n

of y for which M(ỹ) is a flat extension of Mt(y); thus rankM(ỹ) =
rankMt(y) =: r and M(ỹ) � 0. By Theorem 5.1, ỹ has a (unique) repre-
senting measure µ, which is r-atomic and satisfies supp(µ) = VC(KerM(ỹ)).
To conclude the proof, it suffices to verify that (KerMt(y)) = KerM(ỹ),
as this implies directly supp(µ) = VC(KerM(ỹ)) = VC(KerMt(y)). Ob-
viously, KerMt(y) ⊆ KerM(ỹ), implying (KerMt(y)) ⊆ KerM(ỹ). We
now show the reverse inclusion. Let B ⊆ Tn

t−1 index a maximum nonsin-
gular principal submatrix of Mt−1(y). Thus |B| = r and B also indexes
a maximum nonsingular principal submatrix of M(ỹ). Hence, by Lemma
5.3, B is a basis of R[x]/ KerM(ỹ). We show that B is a generating set in
R[x]/(KerMt(y)); that is, for all β ∈ Nn,

xβ ∈ SpanR(B) + (KerMt(y)). (5.8)

We prove (5.8) using induction on |β|. If |β| ≤ t, (5.8) holds since B
indexes a basis of the column space of Mt(y). Assume |β| ≥ t + 1.
Write xβ = xix

γ where |γ| = |β| − 1. By the induction assumption,
xγ =

∑
xα∈B λαxα + q, where λα ∈ R and q ∈ (KerMt(y)). Then,

xβ = xix
γ =

∑
xα∈B λαxix

α + xiq. Obviously, xiq ∈ (KerMt(y)). For
xα ∈ B, deg(xix

α) ≤ t and, therefore, xix
α ∈ SpanR(B) + (Ker Mt(y)).

From this follows that xβ ∈ SpanR(B) + (KerMt(y)). Thus (5.8) holds
for all β ∈ Nn. Take p ∈ KerM(ỹ). In view of (5.8), we can write
p = p0 + q, where p0 ∈ SpanR(B) and q ∈ (KerMt(y)). Hence,
p − q ∈ KerM(ỹ) ∩ SpanR(B), which implies p − q = 0, since B is a basis
of R[x]/ KerM(ỹ). Therefore, p = q ∈ (Ker Mt(y)), which concludes the
proof for equality KerM(ỹ) = (Ker Mt(y)).

We now give several results characterizing existence of a finite atomic
measure for truncated sequences. By Lemma 4.2 (i), a necessary condition
for the existence of a finite atomic reprenting measure µ for a sequence y ∈
RN

n
2t is that its moment matrix Mt(y) has rank at most | supp(µ)|. Theorem

5.20 below gives a characterization for the existence of a minimum atomic
measure, i.e., satisfying | supp(µ)| = rank Mt(y). Then Theorem 5.21 deals
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with the general case of existence of a finite atomic representing measure
and Theorems 5.23 and 5.24 give the analogous results for existence of a
measure supported by a prescribed semialgebraic set. In these results, the
notion of flat extension studied in the preceding section plays a central role.

Theorem 5.20. [23] The following assertions are equivalent for y ∈
RN

n
2t .

(i) y has a (rankMt(y))-atomic representing measure.
(ii) Mt(y) � 0 and one can extend y to a vector ỹ ∈ RN

n
2t+2 in such a way

that Mt+1(ỹ) is a flat extension of Mt(y).

Proof. Directly from Theorems 5.1 and 5.14.

Theorem 5.21. [24, 38] Let y ∈ RN
n
2t , r := rankMt(y) and

v := |VR(KerMt(y))| ≤ ∞; thus r ≤ v (by Lemma 4.2 (i)). Consider
the following assertions:

(i) y has a representing measure.
(ii) y has a

(
n+2t

2t

)
-atomic representing measure.

(iii) Mt(y) � 0 and there exists an integer k ≥ 0 for which y can be

extended to a vector ỹ ∈ R
N

n
2(t+k+1) in such a way that Mt+k(ỹ) � 0

and Mt+k+1(ỹ) is a flat extension of Mt+k(ỹ).

(iv) When v < ∞, y can be extended to a vector ỹ ∈ R
N

n
2(t+v−r+1)

in such a way that Mt+v−r+1(ỹ) � 0 and rankMt+v−r+1(ỹ) ≤
|VR(KerMt+v−r+1(ỹ))|.

Then, (i) ⇐⇒ (ii) ⇐⇒ (iii) and, when v < ∞, (i) ⇐⇒ (iv). Moreover one
can assume in (iii) that k ≤

(
n+2t

2t

)
− r and, when v < ∞, that k ≤ v − r.

Proof. The equivalence of (i) and (ii) follows from Theorem 5.8 and the
implication (iii) =⇒ (i) follows from Theorem 5.19. Assume now that (ii)
holds; that is, y has a finite atomic representing measure µ with | supp(µ)| ≤(
n+2t

2t

)
. Thus y can be extended to the sequence ỹ ∈ RN

n

consisting of
all the moments of the measure µ. By Theorem 5.1 (ii), M(ỹ) � 0 and
rank M(ỹ) = | supp(µ)|. Moreover, for any integer k ≥ 0, rankMt+k(ỹ) ≤
| supp(µ)| ≤ |VR(KerMt+k(ỹ))| (by Lemma 4.2 (i)). When v < ∞, we
find (iv) by letting k := v − r + 1. Let k ≥ 0 be the smallest integer for
which rank Mt+k+1(ỹ) = rankMt+k(ỹ) (whose existence follows from the
fact that r ≤ rankMt+k(ỹ) ≤

(
n+2t

2t

)
for all k ≥ 0). Then, Mt+k+1(ỹ) is a

flat extension of Mt+k(ỹ), which shows (iii). Moreover, rankMt+k+1(ỹ) ≥
rankMt(y)+k = r+k which, together with rankMt+k+1(ỹ) ≤

(
n+2t

2t

)
, gives

the claimed bound k ≤
(
n+2t

2t

)
−r. As VR(KerMt+k+1(ỹ)) ⊆ VR(Ker Mt(y))

since KerMt(y) ⊆ KerMt+k+1(ỹ), we find r + k ≤ rankMt+k+1(ỹ) ≤
|VR(KerMt+k+1(ỹ))| ≤ |VR(KerMt(y))| = v and thus k ≤ v − r in the case
when v < ∞.

Finally assume v < ∞ and (iv) holds. Using again the fact that
VR(KerMt+v−r+1(ỹ)) ⊆ VR(KerMt(y)), we find rankMt+v−r+1(ỹ) ≤
|VR(KerMt+v−r+1(ỹ))| ≤ |VR(KerMt(y))| = v. Therefore, there exists
k ∈ {0, . . . , v− r} for which rankMt+k+1(ỹ) = rankMt+k(ỹ) for, if not, we
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would have rankMt+v−r+1(ỹ) ≥ rankMt(y) + v − r + 1 = v + 1, contra-
dicting rankMt+v−r+1(ỹ) ≤ v. This shows that (iii) holds (and again that
we can choose k ≤ v − r in (iii)).

Remark 5.22. Theorem 5.21 provides conditions characterizing the
existence of a representing measure for a truncated sequence. It is however
not clear how to check these conditions and the smallest integer k for which
(iii) holds as well as the gap v − r may be large. We refer to Fialkow [38]
for a detailed treatment of such issues.

Let us observe here that in some instances the bound v − r is bet-
ter than the bound

(
n+2t

2t

)
− r. For instance, as observed in [38], in

the 2-dimensional case (n = 2), v ≤ t2 by Bezout theorem, implying(
2t+2
2t

)
− v ≥

(
2t+2
2t

)
− t2 = t2 + 3t + 1. Moreover, Fialkow [38] constructs

an instance with large gap v − r ≥
(
t−1
2

)
. For this choose two polynomi-

als p, q ∈ R[x1, x2]t having t2 common zeros in R2, i.e., |VR(p, q)| = t2.
Let µ be a measure on R2 with support VR(p, q) and let y be its sequence
of moments. Then, VR(KerMt(y)) = VR(p, q) and thus v = t2. Indeed,
t2 = | supp(µ)| ≤ |VR(Ker Mt(y))| and VR(KerMt(y)) ⊆ VR(p, q) since
p, q ∈ KerMt(y). Moreover, r = rankMt(y) ≤ |N2

t | − 2 =
(
t+2
2

)
− 2 which

implies v − r ≥ t2 −
(
t+2
2

)
+ 2 =

(
t−1
2

)
.

The next two theorems (from Curto and Fialkow [25]) extend the re-
sults from Theorems 5.20 and 5.21 to truncated sequences having a finite
atomic representing measure whose support is contained in a prescribed
semialgebraic set K. As indicated in [80], they can be derived easily from
Theorems 5.20 and 5.21 using Lemma 5.6. In what follows K is as in (1.2)
and dK as in (1.10). One may assume w.l.o.g. that the polynomials gj

defining K are not constant; thus dgj
≥ 1. For convenience we set dK := 1

if m = 0, i.e., if there are no constraints defining the set K, in which case
K = Rn.

Theorem 5.23. [25] Let K be the set from (1.2) and dK =
maxj=1,...,m dgj

. The following assertions are equivalent for y ∈ RN
n
2t.

(i) y has a (rank Mt(y))-atomic representing measure µ whose support
is contained in K.

(ii) Mt(y) � 0 and y can be extended to a vector ỹ ∈ R
N

n
2(t+dK ) in such a

way that Mt+dK
(ỹ) is a flat extension of Mt(y) and Mt(gj ỹ) � 0 for

j = 1, . . . , m.
Then, setting rj := rank Mt(gj ỹ), exactly r−rj of the atoms in the support
of µ belong to the set of roots of the polynomial gj(x). Moreover µ is a
representing measure for ỹ.

Proof. The implication (i) =⇒ (ii) follows from Theorem 5.20 ((i) =⇒
(ii)) together with Lemma 4.2 (ii). Conversely, assume that (ii) holds and
set r := rankMt(y). By Theorem 5.20 ((ii) =⇒ (i)), y has a r-atomic
representing measure µ; say, µ =

∑
v∈S λvδv where λv > 0, |S| = r. We

prove that S ⊆ K; that is, gj(v) ≥ 0 for all v ∈ S. By Lemma 5.6, there
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exist interpolation polynomials pv (v ∈ S) having degree at most t. Then,
pT

v Mt(gjy)pv =
∑

u∈V (pv(u))2gj(u)λu = gj(v)λv ≥ 0, since Mt(gjy) � 0.
This implies that gj(v) ≥ 0 for all j = 1, . . . , m and v ∈ S, and thus S ⊆ K.
That is, the measure µ is supported by the set K.

We now verify that r−rj of the points of S are zeros of the polynomial
gj . Denote by ỹ ∈ RN

n

the (infinite) sequence of moments of the measure
µ; then gj ỹ is the (infinite) sequence of moments of the measure µj :=∑

v∈S λvgj(v)δv. Thus, ỹ (resp., gj ỹ) is an extension of y (resp., gjy).
Moreover, rank M(gj ỹ) = |{v ∈ S | gj(v) > 0}|. We now verify that
M(gj ỹ) is a flat extension of Mt(gj ỹ), which implies that rj = |{v ∈ S |
gj(v) > 0}|, giving the desired result. For this we note that KerM(ỹ) ⊆
KerM(gj ỹ). Indeed, if p ∈ KerM(ỹ) then, using Lemma 4.1, pT M(gj ỹ)p =
vec(pgj)

T M(ỹ)p = 0. Now, as M(ỹ) is a flat extension of Mt(y), it follows
that M(gj ỹ) is a flat extension of Mt(gj ỹ) too.

Theorem 5.24. [25] Let K be the set from (1.2) and dK =
maxj=1,...,m dgj

. The following assertions are equivalent for y ∈ RN
n
2t.

(i) y has a (finite atomic) representing measure whose support is con-
tained in K.

(ii) Mt(y) � 0 and there exists an integer k ≥ 0 for which y can be

extended to a vector ỹ ∈ R
N

n
2(t+k+dK) in such a way that Mt+k+dK

(ỹ) �
0, Mt+k+dK

(ỹ) is a flat extension of Mt+k(ỹ), and Mt+k(gj ỹ) � 0 for
j = 1, . . . , m.

Proof. Analogously using Theorems 5.21 and 5.23.
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Part 2: Application to Optimization

6. Back to the polynomial optimization problem.

6.1. Hierarchies of relaxations. We consider again the optimiza-
tion problem (1.1). Following Lasserre [65] and as explained earlier, hi-
erarchies of semidefinite programming relaxations can be constructed for
(1.1); namely, the SOS relaxations (3.8) (introduced in Section 3.4), that
are based on relaxing polynomial positivity by sums of squares representa-
tions, and the moment relaxations (4.7) (introduced in Section 4.2), that are
based on relaxing existence of a representing measure by positive semidef-
initeness of moment matrices. For convenience we repeat the formulation
of the bounds psos

t from (3.8) and pmom
t from (4.7). Recall

dp = ⌈deg(p)/2⌉, dgj
= ⌈deg(gj)/2⌉, dK =

{
max(dg1 , . . . , dgm

)

1 if m = 0
(6.1)

Then for any integer t ≥ max(dp, dK),

psos
t = sup ρ s.t. p − ρ ∈ M2t(g1, . . . , gm)

= sup ρ s.t. p − ρ = s0 +
∑m

j=1 sjgj for some s0, sj ∈ Σ

with deg(s0), deg(sjgj) ≤ 2t.

(6.2)

pmom
t = inf

L∈(R[x]2t)∗
L(p) s.t. L(1) = 1,

L(f) ≥ 0 ∀f ∈ M2t(g1, . . . , gm)

= inf
y∈R

Nn
2t

pT y s.t. y0 = 1, Mt(y) � 0,

Mt−dgj
(gjy) � 0 (j = 1, . . . , m).

(6.3)

We refer to program (6.2) as the SOS relaxation of order t, and to program
(6.3) as the moment relaxation of order t. The programs (6.2) and (6.3)
are semidefinite programs involving matrices of size

(
n+t

t

)
= O(nt) and

O(n2t) variables. Hence, for any fixed t, pmom
t and psos

t can be computed in
polynomial time (to any precision). In the remaining of Section 6 we study
in detail some properties of these bounds. In particular,

(i) Duality: psos
t ≤ pmom

t and, under some condition on the set K, the
two bounds pmom

t and psos
t coincide.

(ii) Convergence: Under certain conditions on the set K, there is
asymptotic (sometimes even finite) convergence of the bounds
pmom

t and psos
t to pmin.

(iii) Optimality certificate: Under some conditions, the relaxations are
exact, i.e. psos

t = pmom
t = pmin (or at least pmom

t = pmin).
(iv) Finding global minimizers: Under some conditions, one is able to

extract some global minimizers for the original problem (1.1) from an
optimum solution to the moment relaxation (6.3).
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6.2. Duality. One can verify that the two programs (6.3) and (6.2)
are dual semidefinite programs (cf. [65]), which implies psos

t ≤ pmom
t by

weak duality; this inequality also follows directly as noted earlier in (4.8).
We now give a condition ensuring that strong duality holds, i.e. there is
no duality gap between (6.3) and (6.2).

Theorem 6.1. [65, 132] If K has a nonempty interior (i.e. there
exists a full dimensional ball contained in K), then pmom

t = psos
t for all

t ≥ max(dp, dK). Moreover, if (6.2) is feasible then it attains its supremum.

Proof. We give two arguments. The first argument comes from [132]
and relies on Theorem 3.33. Let ρ > psos

t , i.e. p− ρ 6∈ M2t(g1, . . . , gm). As
M2t(g1, . . . , gm) is a closed convex cone (by Theorem 3.33), there exists a
hyperplane strictly separating p − ρ from M2t(g1, . . . , gm); that is, there
exists y ∈ RN

n
2t with

yT vec(p − ρ) < 0 and yT vec(f) ≥ 0 ∀f ∈ M2t(g1, . . . , gm). (6.4)

If y0 > 0 then we may assume y0 = 1 by rescaling. Then y is feasible
for (6.3), which implies pmom

t ≤ yT vec(p) < ρ. As this is true for all
ρ > psos

t , we deduce that pmom
t ≤ psos

t and thus equality holds. Assume now
y0 = 0. Pick x ∈ K and set z := y + ǫζ2t,x where ζ2t,x = (xα)|α|≤2t. Then,
zT vec(p− ρ) < 0 if we choose ǫ > 0 small enough and zT vec(f) ≥ 0 for all
f ∈ M2t(g1, . . . , gm), that is, z satisfies (6.4). As z0 = ǫ > 0, the previous
argument (applied to z in place of y) yields again pmom

t = psos
t . Finally, if

(6.2) is feasible then it attains its supremum since M2t(g1, . . . , gm) is closed
and one can bound the variable ρ.

The second argument, taken from [65], works under the assumption
that (6.2) is feasible and uses the strong duality theorem for semidefinite
programming. Indeed, by Lemma 4.4, the program (6.3) is strictly feasible
and thus, by Theorem 1.3, there is no duality gap and (6.2) attains its
supremum.

Proposition 6.2.
(i) If M(g1, . . . , gm) is Archimedean, then the SOS relaxation (6.2) is

feasible for t large enough.
(ii) If the ball constraint R2−∑n

i=1 x2
i ≥ 0 is present in the description of

K, then the feasible region of the moment relaxation (6.3) is bounded
and the infimum is attained in (6.3).

Proof. (i) Using (3.17), p + N ∈ M(g1, . . . , gm) for some N and thus
−N is feasible for (6.2) for t large enough.
(ii) Let y be feasible for (6.3). With g := R2 −∑i=1 x2

i , (gy)2β = R2y2β −∑n
i=1 y2β+2ei

. Thus the constraint Mt−1(gy) � 0 implies y2β+2ei
≤ R2y2β

for all |β| ≤ t − 1 and i = 1, . . . , n. One can easily derive (using induction
on |β|) that y2β ≤ R2|β| for |β| ≤ t. This in turn implies |yγ | ≤ R|γ| for
|γ| ≤ 2t. Indeed, write γ = α + β with |α|, |β| ≤ t; then as Mt(y) � 0,
y2

α+β ≤ y2αy2β ≤ R2|α|R2|β|, giving |yγ | ≤ R|γ|. This shows that the
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feasible region to (6.3) is bounded and thus compact (as it is closed). Thus
(6.3) attains its infimum.

The next example (taken from [132]) shows that the infimum may not
be attained in (6.3) even when K has a nonempty interior.

Example 6.3. Consider the problem pmin := infx∈K x2
1, where K ⊆

R2 is defined by the polynomial g1 = x1x2 − 1 ≥ 0. Then pmin = pmom
t = 0

for any t ≥ 1, but these optimum values are not attained. Indeed, for small
ǫ > 0, the point x := (ǫ, 1/ǫ) lies in K, which implies pmin ≤ ǫ2. As pmom

t ≥
0 (since y20 ≥ 0 for any y feasible for (6.3)), this gives pmom

t = pmin = 0.
On the other hand y20 > 0 for any feasible y for (6.3); indeed M0(g1y) � 0
implies y11 ≥ 1, and y20 = 0 would imply y11 = 0 since M1(y) � 0. Thus
the infimum is not attained in (6.3) in this example. Note that the above
still holds if we add the constraints −2 ≤ x1 ≤ 2 and 2 ≤ x2 ≤ 2 to the
description of K to make it compact.

On the other hand, when K has an empty interior, the duality gap
may be infinite. We now give such an instance (taken from [132]) where
−∞ = psos

t < pmom
t = pmin.

Example 6.4. Consider the problem pmin := minx∈K x1x2, where
K := {x ∈ R2 | g1(x), g2(x), g3(x) ≥ 0} with g1 := −x2

2, g2 := 1 + x1,
g3 := 1 − x1. Thus K = [−1, 1] × {0}. Obviously, pmin = 0. We verify
that pmom

1 = 0, psos
1 = −∞. For this let y be feasible for the program

(6.3) for order t = 1; we show that ye1+e2 = 0. Indeed, (M1(y))e2,e2 =
y2e2 ≥ 0 and (M0(g1y))0,0 = −y2e2 ≥ 0 imply y2e2 = 0. Thus the e2th
column of M1(y) is zero, which gives ye1+e2 = (M1(y))e1,e2 = 0. Assume
now that ρ is feasible for the program (6.2) at order t = 1. That is,
x1x2 − ρ =

∑
i(ai + bix1 + cix2)

2 − e1x
2
2 + e2(1 +x1)+ e3(1−x1) for some

ai, bi, ci ∈ R and e1, e2, e3 ∈ R+. Looking at the coefficient of x2
1 we find

0 =
∑

i b2
i and thus bi = 0 for all i. Looking at the coefficient of x1x2 we

find 1 = 0, a contradiction. Therefore there is no feasible solution, i.e.,
psos
1 = −∞. On the other hand, psos

2 = 0 since, for all ǫ > 0, psos
2 ≥ −ǫ as

x1x2 + ǫ = (x2+2ǫ)2

8ǫ (x1 + 1) + (x2−2ǫ)2

8ǫ (−x1 + 1) − 1
4ǫx

2
2.

What if K has an empty interior? When K has a nonempty inte-
rior the moment/SOS relaxations behave nicely; indeed there is no duality
gap (Theorem 6.1) and the optimum value is attained under some con-
ditions (cf. Proposition 6.2). Marshall [88] has studied in detail the case
when K has an empty interior. He proposes to exploit the presence of equa-
tions to sharpen the SOS/moment bounds, in such a way that there is no
duality gap between the sharpened bounds. Consider an ideal J ⊆ I(K),
where I(K) = {f ∈ R[x] | f(x) = 0 ∀x ∈ K} is the vanishing ideal of
K; thus I(K) = {0} if K has a nonempty interior. Marshall makes the
following assumption:

J ⊆ M(g1, . . . , gm). (6.5)
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If this assumption does not hold and {h1, . . . , hm0} is a system of generators
of the ideal J , it suffices to add the polynomials ±h1, . . . ,±hm0 in order
to obtain a representation of K that fulfills (6.5). Now one may work with
polynomials modulo the ideal J . Let

M′
2t(g1, . . . , gm) := {p′ | p ∈ M2t(g1, . . . , gm)} ⊆ R[x]2t/J

be the image of M2t(g1, . . . , gm) under the map p 7→ p′ := p mod J from
R[x] to R[x]/J . (This set was introduced in (3.22) for the ideal J = I(K).)
Consider the following refinement of the SOS relaxation (6.2)

psos,eq
t := supρ s.t. (p − ρ)′ ∈ M′

2t(g1, . . . , gm)
= sup ρ s.t. p − ρ ∈ M2t(g1, . . . , gm) + J .

(6.6)

For the analogue of (6.3), we now consider linear functionals on R[x]2t/J ,
i.e. linear functionals on R[x]2t vanishing on J ∩ R[x]2t, and define

pmom,eq
t := inf

L∈(R[x]2t/J )∗
L(f)

s.t. L(1) = 1, L(f) ≥ 0 ∀f ∈ M′
2t(g1, . . . , gm).

(6.7)

Then, psos
t ≤ psos,eq

t ≤ psos, where the last inequality follows using (6.5);
psos,eq

t ≤ pmom,eq
t , pmom

t ≤ pmom,eq
t ≤ pmin. Moreover, pmom

t = pmom,eq
t ,

psos
t = psos,eq

t if K has a nonempty interior since then J = I(K) = {0}.
Marshall [88] shows the following extension of Theorem 6.1, which relies on
Theorem 3.35 showing that M′

2t(g1, . . . , gm) is closed when J = I(K). We
omit the details of the proof which are similar to those for Theorem 6.1.

Theorem 6.5. [88] When J = I(K) satisfies (6.5), psos,eq
t = pmom,eq

t

for all t ≥ max(dp, dK).

As a consequence,

sup
t

pmom
t = psos if J = I(K) ⊆ M(g1, . . . , gm).

Indeed, pmom
t ≤ pmom,eq

t = psos,eq
t ≤ psos, yielding pmom ≤ psos and thus

equality holds.
If we know a basis {h1, . . . , hm0} of J then we can add the equations

hj = 0 (j ≤ m0), leading to an enriched representation for the set K of the
form (2.5). Assuming J = I(K), the SOS/moment bounds with respect
to the description (2.5) of K are related to the bounds (6.6), (6.7) by

psos
t ≤ pmom

t ≤ pmom,eq
t = psos,eq

t . (6.8)

Lemma 6.6. Assume that J = I(K), {h1, . . . , hm0} is a Gröbner
basis of J for a total degree ordering, and deg(hj) is even ∀j ≤ m0. Then
equality holds throughout in (6.8).
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Proof. Let ρ be feasible for (6.6); we show that ρ is feasible for (6.2),
implying psos,eq

t = psos
t . We have p − ρ =

∑m
j=0 sjgj + q where sj ∈ Σ,

deg(sjgj) ≤ 2t and q ∈ J . Then q =
∑m0

j=1 ujhj with deg(ujhj) ≤ 2t
(since the hj ’s form a Gröbner basis for a total degree ordering) and thus
deg(uj) ≤ 2(t − dhj

) (since deg(hj) = 2dhj
is even), i.e. ρ is feasible

for (6.2).

Remark 6.7. As each equation hj = 0 is treated like two in-
equalities ±hj ≥ 0, we have f ∈ M2t(g1, . . . , gm,±h1, . . . ,±hm0) if and
only if f =

∑m
j=0 sjgj +

∑m0

j=1(u
′
j − u′′

j )hj for some sj , u
′
j, u

′′
j ∈ Σ with

deg(sjgj), deg(u′
jhj), deg(u′′

j hj) ≤ 2t. As deg(u′
jhj), deg(u′′

j hj) ≤ 2t is
equivalent to deg(u′

j), deg(u′′
j ) ≤ 2(t − dhj

), one may equivalently write∑m0

j=1(u
′
j − u′′

j )hj =
∑m0

j=1 ujhj where uj ∈ R[x]2(t−dhj
). Note that

deg(uj) ≤ 2(t − dhj
) implies deg(ujhj) ≤ 2t, but the reverse does not

hold, except if at least one of deg(uj), deg(hj) is even. This is why we
assume in Lemma 6.6 that deg(hj) is even. As an illustration, consider
again Example 6.4, where I(K) = (x2). If we add the equation x2 = 0 to
the description of K, we still get psos

1 = −∞ (since the multiplier of x2 in
a decomposition of x1x2 −ρ ∈ M2(x1 +1, 1−x1,±x2) should be a scalar),
while psos,eq

1 = 0 (since x1 is now allowed as multiplier of x2).

6.3. Asymptotic convergence. The asymptotic convergence of the
SOS/moment bounds to pmin follows directly from Putinar’s theorem (The-
orem 3.20); recall Definition 3.18 for an Archimedean quadratic module.

Theorem 6.8. [65] If M(g1, . . . , gm) is Archimedean, then psos =
pmom = pmin, i.e. limt→∞ psos

t = limt→∞ pmom
t = pmin.

Proof. Given ǫ > 0, the polynomial p − pmin + ǫ is positive on K. By
Theorem 3.20, it belongs to M(g1, . . . , gm) and thus the scalar pmin − ǫ is
feasible for the program (6.2) for some t. Therefore, there exists t for which
psos

t ≥ pmin − ǫ. Letting ǫ go to 0, we find that psos = limt→∞ psos
t ≥ pmin,

implying psos = pmom = pmin.

Note that if we would have a representation result valid for nonnegative
(instead of positive) polynomials, this would immediately imply the finite
convergence of the bounds psos

t , pmom
t to pmin. For instance, Theorem 2.4 in

Section 2.1 gives such a reprentation result in the case when the description
of K involves a set of polynomial equations generating a zero-dimensional
radical ideal. Thus we have the following result.

Corollary 6.9. Assume K is as in (2.5) and h1, . . . , hm0 gener-
ate a zero-dimensional radical ideal. Then, psos

t = pmom
t = pmin for t

large enough.

Proof. Directly from Theorem 2.4, as in the proof of Theorem 6.8.

In the non-compact case, convergence to pmin may fail. For instance,
Marshall [88] shows that when K contains a full dimensional cone then, for
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all t ≥ max(dp, dK), psos
t = pmom

t , which can be strictly smaller than pmin.
This applies in particular to the case K = Rn.

6.4. Approximating the unique global minimizer via the mo-
ment relaxations. Here we prove that when (1.1) has a unique global
minimizer, then this minimizer can be approximated from the optimum so-
lutions to the moment relaxations (6.3). We show in fact a stronger result
(Theorem 6.11); this result is taken from Schweighofer [132] (who however
formulates it in a slightly more general form in [132]). Recall the definition
of the quadratic module M(g1, . . . , gm) from (3.14) and of its truncation
Mt(g1, . . . , gm) from (3.20). Define the set of global minimizers of (1.1)

Kmin
p := {x ∈ K | p(x) = pmin}. (6.9)

Definition 6.10. Given y(t) ∈ RN
n
2t, y(t) is nearly optimal for (6.3)

if y(t) is feasible for (6.3) and limt→∞ pT y(t) = lim pmom
t .

Theorem 6.11. [132] Assume M(g1, . . . , gm) is Archimedian,
Kmin

p 6= ∅, and let y(t) be nearly optimal solutions to (6.3). Then,

∀ǫ > 0 ∃t0 ≥ max(dp, dK) ∀t ≥ t0 ∃µ probability measure on Kmin
p such

that maxi=1,...,n |y(t)
ei −

∫
xiµ(dx)| ≤ ǫ.

Proof. As M(g1, . . . , gm) is Archimedian, we deduce from (3.17) that

∀k ∈ N ∃Nk ∈ N ∀α ∈ Nn
k Nk ± xα ∈ MNk

(g1, . . . , gm). (6.10)

Define the sets Z :=
∏

α∈Nn [−N|α|, N|α|], C0 := {z ∈ Z | z0 = 1}, Cf :=
{z ∈ Z | zT f ≥ 0} for f ∈ M(g1, . . . , gm), Cδ := {z ∈ Z | |zT p−pmin| ≤ δ}
for δ > 0, and

C := {z ∈ Z | maxi=1,...,n |zei
−
∫

xiµ(dx)| > ǫ
∀µ probability measure on Kmin

p }.

Claim 6.12.
⋂

f∈M(g1,...,gm) Cf ∩⋂δ>0 Cδ

⋂
C0

⋂
C = ∅.

Proof. Assume z lies in the intersection. As z ∈ C0∩
⋂

f∈M(g1,...,gm) Cf ,

we deduce using (4.6) that z ∈ Mput
� (g1, . . . , gm) (recall (4.16)). Hence, by

Theorem 4.11, z ∈ MK , i.e. z has a representing measure µ which is a
probability measure on the set K. As z ∈ ∩δ>0Cδ, we have pT z = pmin, i.e.∫
(p(x) − pmin)µ(dx) = 0, which implies that the support of µ is contained

in the set Kmin
p , thus contradicting the fact that z ∈ C.

As Z is a compact set (by Tychonoff’s theorem) and all the sets
Cf , Cδ, C0, C are closed subsets of Z, there exists a finite collection of
those sets having an empty intersection. That is, there exist f1, . . . , fs ∈
M(g1, . . . , gm), δ > 0 such that

Cf1 ∩ . . . ∩ Cfs
∩ Cδ ∩ C0 ∩ C = ∅. (6.11)
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Choose an integer t1 ≥ max(dp, dK) such that f1, . . . , fs ∈
M2t1(g1, . . . , gm). Then choose an integer t0 such that t0 ≥ t1, 2t0 ≥
max(Nk | k ≤ 2t1) (recall (6.10)) and |pT y(t) − pmin| ≤ δ for all t ≥ t0. We
now verify that this t0 satisfies the conclusion of the theorem. For this fix

t ≥ t0. Consider the vector z ∈ RN
n

defined by zα := y
(t)
α if |α| ≤ 2t1, and

zα := 0 otherwise.

Claim 6.13. z ∈ Z.

Proof. Let α ∈ Nn with |α| =: k ≤ 2t1. Then Nk ± xα ∈
MNk

(g1, . . . , gm) ⊆ M2t0(g1, . . . , gm) ⊆ M2t(g1, . . . , gm). As y(t) is feasi-

ble for (6.3) we deduce that (y(t))T vec(Nk ± xα) ≥ 0, implying |y(t)
α | ≤

Nk = N|α|.

Obviously z ∈ C0. Next z ∈ Cδ since |zT p − pmin| = |(y(t))T p −
pmin| ≤ δ as 2t1 ≥ deg(p). Finally, for any r = 1, . . . , s, z ∈ Cfr

since
zT fr = (y(t))T fr ≥ 0 as fr ∈ M2t1(g1, . . . , gm) ⊆ M2t(g1, . . . , gm). As
the set in (6.11) is empty, we deduce that z 6∈ C. Therefore, there ex-

ists a probability measure µ on Kmin
p for which maxi |y(t)

ei −
∫

xiµ(dx)| =
maxi |zei

−
∫

xiµ(dx)| ≤ ǫ. This concludes the proof of Theorem 6.11.

Corollary 6.14. Assume M(g1, . . . , gm) is Archimedian and prob-
lem (1.1) has a unique minimizer x∗. Let y(t) be nearly optimal solutions

to (6.3). Then limt→∞ y
(t)
ei = x∗

i for each i = 1, . . . , n.

Proof. Directly from Theorem 6.11 since the Dirac measure δx∗ at x∗

is the unique probability measure on Kmin
p .

6.5. Finite convergence. Here we show finite convergence for the
moment/SOS relaxations, when the description of the semialgebraic set
K contains a set of polynomial equations h1 = 0, . . . , hm0 = 0 gener-
ating a zero-dimensional ideal. (Recall Corollary 6.9 for the radical zero-
dimensional case.) Theorem 6.15 below extends a result of Laurent [81]
and uses ideas from Lasserre et al. [75].

Theorem 6.15. Consider the problem (1.1) of minimizing p ∈ R[x]
over the set K = {x ∈ Rn | hj(x) = 0 (j = 1, . . . , m0), gj(x) ≥ 0 (j =
1, . . . , m)} (as in (2.5)). Set J := (h1, . . . , hm0).

(i) If |VC(J )| < ∞, then pmin = pmom
t = psos

t for t large enough.
(ii) If |VR(J )| < ∞, then pmin = pmom

t for t large enough.

Proof. Fix ǫ > 0. The polynomial p − pmin + ǫ is positive on K. For
the polynomial u := −∑m0

j=1 h2
j , the set {x ∈ Rn | u(x) ≥ 0} = VR(J ) is

compact (in fact, finite under (i) or (ii)) and u belongs to the quadratic
module generated by the polynomials ±h1, . . . ,±hm0 . Hence we can apply
Theorem 3.20 and, therefore, there is a decomposition

p − pmin + ǫ = s0 +

m∑

j=1

sjgj + q, (6.12)
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where s0, sj are sums of squares and q ∈ J . To finish the proof we distin-
guish the two cases (i), (ii).

Consider first the case (i) when |VC(J )| < ∞. Let {f1, . . . , fL} be a
Gröbner basis of J for a total degree monomial ordering, let B be a basis
of R[x]/J , and set dB := maxb∈B deg(b) (which is well defined as |B| < ∞
since J is zero-dimensional). Consider the decomposition (6.12). Say,
sj =

∑
i s2

i,j and write si,j = ri,j + qi,j , where ri,j is a linear combination
of members of B and qi,j ∈ J ; thus deg(ri,j) ≤ dB. In this way we obtain
another decomposition:

p − pmin + ǫ = s′0 +

m∑

j=1

s′jgj + q′, (6.13)

where s′0, s
′
j are sums of squares, q′ ∈ J and deg(s′0), deg(s′j) ≤ 2dB. Set

T0 := max(2dp, 2dB, 2dB + 2dg1 , . . . , 2dB + 2dgm
). (6.14)

Then, deg(s′0), deg(s′jgj), deg(p − pmin + ǫ) ≤ T0 and thus deg(q′) ≤ T0.

Therefore, q′ has a decomposition q′ =
∑L

l=1 ulfl with deg(ulfl) ≤
deg(q′) ≤ T0 (because we use a total degree monomial ordering). We need
to find a decomposition of q′ with bounded degrees in the original basis
{h1, . . . , hm0} of J . For this, write fl =

∑m0

j=1 al,jhj where al,j ∈ R[x].

Then, q′ =
∑L

l=1 ul(
∑m0

j=1 al,jhj) =
∑m0

j=1(
∑L

l=1 al,jul)hj =:
∑m0

j=1 bjhj ,

setting bj :=
∑L

l=1 al,jul. As deg(ul) ≤ T0, we have deg(bjhj) ≤
2dhj

+ T0 + maxL
l=1 deg(al,j). Thus, deg(bjhj) ≤ Tg after setting Tg :=

T0 + maxl,j(deg(al,j) + 2dhj
), which is a constant not depending on ǫ.

Therefore we can conclude that pmin − ǫ is feasible for the program (6.2)
for all t ≥ T1 := ⌈Tg/2⌉. This implies psos

t ≥ pmin− ǫ for all t ≥ T1. Letting
ǫ go to zero, we find psos

t ≥ pmin and thus psos
t = pmin for t ≥ T1, which

concludes the proof in case (i).

Consider now the case (ii) when |VR(J )| < ∞. Let y be feasible
for the program (6.3); that is, y ∈ RN

n
2t satisfies y0 = 1, Mt(y) � 0,

Mt−dhj
(hjy) = 0 (j = 1, . . . , m0), Mt−dgj

(gjy) � 0 (j = 1, . . . , m). We

show pT y ≥ pmin for t large enough. We need the following observations
about the kernel of Mt(y). First, for j = 1, . . . , m0, hj ∈ KerMt(y) for
t ≥ 2dhj

(directly, from the fact that Mt−dhj
(hjy) = 0). Moreover, for

t large enough, KerMt(y) contains any given finite set of polynomials of
I(VR(J )).

Claim 6.16. Let f1, . . . , fL ∈ I(VR(J )). There exists t1 ∈ N such
that f1, . . . , fL ∈ KerMt(y) for all t ≥ t1.

Proof. Fix l = 1, . . . , L. As fl ∈ I(VR(J )), by the Real Nullstellensatz
(Theorem 2.1), f2ml

l +
∑

i p2
l,i =

∑m
j=1 ul,jhj for some pl,i, ul,j ∈ R[x] and

ml ∈ N\{0}. Set t1 := max(maxm0

j=1 2dhj
, 1+maxl≤L,j≤m0 deg(ul,jhj)) and
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let t ≥ t1. Then, each ul,jhj lies in KerMt(y) by Lemma 5.7. Therefore,
f2ml

l +
∑

i p2
l,i ∈ KerMt(y), which implies fml

l , pl,i ∈ KerMt(y). An easy
induction permits to conclude that fl ∈ KerMt(y).

Let {f1, . . . , fL} be a Gröbner basis of I(VR(J )) for a total de-
gree monomial ordering, let B be a basis of R[x]/I(VR(J )), and set
dB := maxb∈B deg(b) (which is well defined since |B| < ∞ as I(VR(J )) is
zero-dimensional). Given ǫ > 0, consider the decomposition (6.12) where
s0, sj are sums of squares and q ∈ J . As in case (i), we can derive an-
other decomposition (6.13) where s′0, s

′
j are s.o.s., q′ ∈ I(VR(J )), and

deg(s′0), deg(s′j) ≤ 2dB. Then, deg(s′0), deg(s′jgj), deg q′ ≤ T0 with T0 being

defined as in (6.14) and we can write q′ =
∑L

l=1 ulfl with deg(ulfl) ≤ T0.
Fix t ≥ max(T0 +1, t1). Then, ulfl ∈ KerMt(y) (by Lemma 5.7 and Claim
6.16) and thus q′ ∈ KerMt(y). Moreover, vec(1)T Mt(y)vec(s′jgj) ≥ 0;

to see it, write s′j =
∑

i a2
i,j and note that vec(1)T Mt(y)vec(s′jgj) =∑

i aT
i,jMt−dgj

(gjy)ai,j ≥ 0 since Mt−dgj
(gjy) � 0. Therefore, we de-

duce from (6.13) that vec(1)T Mt(y)vec(p − pmin + ǫ) ≥ 0, which gives
pT y = 1T Mt(y)p ≥ pmin − ǫ and thus pmom

t ≥ pmin − ǫ. Letting ǫ go to 0,
we obtain pmom

t ≥ pmin and thus pmom
t = pmin.

Question 6.17. Does there exist an example with |VC(J )| = ∞,
|VR(J )| < ∞ and where psos

t < pmin for all t ?

The finite convergence result from Theorem 6.15 applies, in particular,
to the case when K is contained in a discrete grid K1×. . .×Kn with Ki ⊆ R

finite, considered by Lasserre [67], and by Lasserre [66] in the special case
K ⊆ {0, 1}n. We will come back to the topic of exploiting equations in
Section 8.2.

6.6. Optimality certificate. We now formulate some stopping cri-
terion for the moment hierarchy (6.3), i.e. some condition permitting to
claim that the moment relaxation (6.3) is in fact exact, i.e. pmom

t = pmin,
and to extract some global minimizer for (1.1).

A first easy such condition is as follows. Let y be an optimum solution
to (6.3) and x∗ := (y10...0, . . . , y0...01) the point in Rn consisting of the
coordinates of y indexed by α ∈ Nn with |α| = 1. Then

x∗ ∈ K and pmom
t = p(x∗) =⇒ pmom

t = pmin and

x∗ is a global minimizer of p over K.
(6.15)

Indeed pmin ≤ p(x∗) as x ∈ K, which together with p(x∗) = pmom
t ≤ pmin

implies equality pmom
t = pmin and x∗ is a minimizer of p over K. Note that

pmom
t = p(x∗) automatically holds if p is linear. According to Theorem

6.11 this condition has a good chance to be satisfied (approximatively)
when problem (1.1) has a unique minimizer. See Examples 6.24, 6.25 for
instances where the criterion (6.15) is satisfied.
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We now see another stopping criterion, which may work when problem
(1.1) has a finite number of global minimizers. This stopping criterion,
which has been formulated by Henrion and Lasserre [54], deals with the
rank of the moment matrix of an optimal solution to (6.3) and is based
on the result of Curto and Fialkow from Theorem 5.23. As in (6.9), Kmin

p

denotes the set of global minimizers of p over the set K. Thus Kmin
p 6= ∅,

e.g., when K is compact. The next result is based on [54] combined with
ideas from [75].

Theorem 6.18. Let t ≥ max(dp, dK) and let y ∈ RN
n
2t be an optimal

solution to the program (6.3). Assume that the following rank condition
holds:

∃s s.t. max(dp, dK) ≤ s ≤ t and rankMs(y) = rankMs−dK
(y). (6.16)

Then pmom
t = pmin and VC(KerMs(y)) ⊆ Kmin

p . Moreover, equality

VC(KerMs(y)) = Kmin
p holds if rankMt(y) is maximum among all opti-

mal solutions to (6.3).

Proof. By assumption, pmom
t = pT y, Mt(y) � 0, rank Ms(y) =

rank Ms−dK
(y) =: r and Ms−dK

(gjy) � 0 for j = 1, . . . , m, where
max(dp, dK) ≤ s ≤ t. As s ≥ dK , we can apply Theorem 5.23 and con-
clude that the sequence (yα)α∈Nn

2s
has a r-atomic representing measure

µ =
∑r

i=1 λiδvi
, where vi ∈ K, λi > 0 and

∑r
i=1 λi = 1 (since y0 = 1).

As s ≥ dp, pmom
t = pT y =

∑
|α|≤2s pαyα =

∑r
i=1 λip(vi) ≥ pmin, since

p(vi) ≥ pmin for all i. On the other hand, pmin ≥ pmom
t . This implies

that pmin = pmom
t and that each vi is a minimizer of p over the set K, i.e.,

supp(µ) = {v1, . . . , vr} ⊆ Kmin
p . As supp(µ) = VC(KerMs(y)) by Theorem

5.19, we obtain VC(Ker Ms(y)) ⊆ Kmin
p .

Assume now that rankMt(y) is maximum among all optimal solu-
tions to (6.3). By Lemma 1.4, KerMt(y) ⊆ KerMt(y

′) for any other
optimal solution y′ to (6.3). For any v ∈ Kmin

p , y′ := ζ2t,v is fea-

sible for (6.3) with objective value pT y′ = p(v) = pmin; thus y′ is
an optimal solution and thus KerMt(y) ⊆ KerMt(ζ2t,v). This implies
KerMt(y) ⊆ ∩v∈Kmin

p
KerMt(ζ2t,v) ⊆ I(Kmin

p ). Therefore, KerMs(y) ⊆
KerMt(y) ⊆ I(Kmin

p ), which implies Kmin
p ⊆ VC(KerMs(y)) and thus

equality VC(Ker Ms(y)) = Kmin
p holds.

Hence, if at some order t ≥ max(dp, dK) one can find a maximum rank
optimal solution to the moment relaxation (6.3) which satisfies the rank
condition (6.16), then one can find all the global minimizers of p over the
set K, by computing the common zeros to the polynomials in KerMs(y). In
view of Theorem 5.19 and Lemma 5.2, the ideal (KerMs(y)) is (real) radical
and zero-dimensional. Hence its variety VC(Ker Ms(y)) is finite. Moreover
one can determine this variety with the eigenvalue method, described in
Section 2.4. This extraction procedure is presented in Henrion and Lasserre
[54] and is implemented in their optimization software GloptiPoly.
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The second part of Theorem 6.18, asserting that all global minimizers
are found when having a maximum rank solution, relies on ideas from [75].
When p is the constant polynomial 1 and K is defined by the equations
h1 = 0, . . . , hm0 = 0, then Kmin

p is the set of all common real roots of
the hj ’s. The paper [75] explains in detail how the moment methodology
applies to finding real roots, and [76] extends this to complex roots.

As we just proved, if (6.16) holds for a maximum rank optimal solution
y to (6.3), then Kmin

p = VC(KerMs(y)) is finite. Hence the conditions of
Theorem 6.18 can apply only when p has finitely many global minimizers
over the set K. We will give in Example 6.24 an instance with infinitely
many global minimizers and thus, as predicted, the rank condition (6.16)
is not satisfied. We now see an example where the set Kmin

p of global
minimizers is finite but yet the conditions of Theorem 6.18 are never met.

Example 6.19. We give here an example where |Kmin
p | < ∞ and

pmom
t = psos

t < pmin; hence condition (6.16) does not hold. Namely consider
the problem

pmin = min
x∈K

p(x) where K := {x ∈ Rn | g1(x) := 1 −
n∑

i=1

x2
i ≥ 0}.

Assume that p is a homogeneous polynomial which is positive (i.e., p(x) > 0
for all x ∈ Rn \ {0}), but not a sum of squares. Then, pmin = 0 and the
origin is the unique minimizer, i.e., Kmin

p = {0}. Consider the moment
relaxation (6.3) and the dual SOS relaxation (6.2) for t ≥ dp. As M(g1)
is Archimedean, the SOS relaxation (6.2) is feasible for t large enough.
Moreover, as K has a nonempty interior, there is no duality gap, i.e.
pmom

t = psos
t , and the supremum is attained in (6.2) (apply Theorem 6.1).

We now verify that psos
t = pmom

t < pmin = 0. Indeed, if psos
t = 0, then

p = s0 + s1(1 −∑n
i=1 x2

i ) where s0, s1 ∈ R[x] are sums of squares. It is
not difficult to verify that this implies that p must be a sum of squares
(see [30, Prop. 4]), yielding a contradiction. Therefore, on this exam-
ple, pmom

t = psos
t < pmin and thus the rank condition (6.16) cannot be

satisfied. This situation is illustrated in Example 6.25. There we choose
p = M + ǫ(x6

1 + x6
2 + x6

3) where M is the Motzkin form (introduced in Ex-
ample 3.7). Thus p is a homogeneous positive polynomial and there exists
ǫ > 0 for which pǫ is not SOS (for if not M = limǫ→0 pǫ would be SOS since
the cone Σ3,6 is closed).

On the other hand, we now show that the rank condition (6.16) in
Theorem 6.18 holds for t large enough when the description of the set K
comprises a system of equations h1 = 0, . . . , hm0 = 0 having finitely many
real zeros. Note that the next result also provides an alternative proof for
Theorem 6.15 (ii), which does not use Putinar’s theorem but results about
moment matrices instead.

Theorem 6.20. [75, Prop. 4.6] Let K be as in (2.5), let J be the ideal
generated by h1, . . . , hm0 and assume that |VR(J )| < ∞. For t large enough,
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there exists an integer s, max(dK , dp) ≤ s ≤ t, such that rankMs(y) =
rankMs−dK

(y) for any feasible solution y to (6.3).

Proof. As in the proof of Theorem 6.15 (ii), let {f1, . . . , fL} be a
Gröbner basis of I(VR(J )) for a total degree monomial ordering. By Claim
6.16, there exists t1 ∈ N such that f1, . . . , fL ∈ KerMt(y) for all t ≥ t1. Let
B be a basis of R[x]/I(VR(J )) and dB := maxb∈B deg(b). Write any mono-

mial as xα = r(α) +
∑L

l=1 p
(α)
l fl, where r(α) ∈ SpanR(B), p

(α)
l ∈ R[x]. Set

t2 := max(t1, dB +dK , dp) and t3 := 1+max(t2, deg(p
(α)
l fl) for l ≤ L, |α| ≤

t2). Fix t ≥ t3 and let y be feasible for (6.3). We claim that rankMt2(y) =

rankMt2−dK
(y). Indeed, consider α ∈ Nn

t2 . As deg(p
(α)
l fl) ≤ t − 1 and

fl ∈ KerMt(y), we deduce (using Lemma 5.7) that p
(α)
l fl ∈ KerMt(y) and

thus xα − r(α) ∈ KerMt(y). As deg(r(α)) ≤ dB ≤ t2 − dK , this shows that
the αth column of Mt(y) can be written as a linear combination of columns
of Mt2−d(y); that is, rankMt2(y) = rankMt2−dK

(y).

Let us conclude this section with a brief discussion about the assump-
tions made in Theorem 6.18. A first basic assumption we made there is
that the moment relaxation (6.3) attains its minimum. This is the case,
e.g., when the feasible region of (6.3) is bounded (which happens e.g. when
a ball constraint is present in the description of K, cf. Proposition 6.2),
or when program (6.2) is strictly feasible (recall Theorem 1.3). A second
basic question is to find conditions ensuring that there is no duality gap,
i.e. pmom

t = psos
t , since this is needed if one wants to solve the semidefinite

programs using a primal-dual interior point algorithm. This is the case,
e.g. when K has a nonempty interior (by Theorem 6.1) or when any of the
programs (6.3) or (6.2) is strictly feasible (recall Theorem 1.3).

Another question raised in Theorem 6.18 is to find an optimum solu-
tion to a semidefinite program with maximum rank. It is in fact a property
of most interior-point algorithms that they return a maximum rank optimal
solution. This is indeed the case for the SDP solver SeDuMi used within
GloptiPoly. More precisely, when both primal and dual problems (6.3) and
(6.2) are strictly feasible, then the interior-point algorithm SeDuMi con-
structs a sequence of points on the so-called central path, which has the
property of converging to an optimal solution of maximum rank. SeDuMi
also finds a maximum rank optimal solution under the weaker assump-
tion that (6.3) is feasible and attains its minimum, (6.2) is feasible, and
pmom

t = psos
t < ∞. Indeed SeDuMi applies the so-called extended self-dual

embedding technique, which consists of embedding the given program into
a new program satisfying the required strict feasibility property; a maxi-
mum rank optimal solution for the original problem can then be derived
from a maximum rank optimal solution to the embedded problem. See [28,
Ch. 4], [156, Ch. 5] for details. (This issue is also discussed in [75] in the
context of solving systems of polynomial equations.)
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There are many further numerical issues arising for the practical imple-
mentation of the SOS/moment method. Just to name a few, the numerical
instability of linear algebra dealing with matrices with a Hankel type struc-
ture, or the numerically sensitive issue of computing ranks, etc. To address
the first issue, Löfberg and Parrilo [84] suggest to use sampling to represent
polynomials and other non-monomial bases of the polynomial ring R[x]; see
also [29] where promising numerical results are reported for the univariate
case, and [122].

6.7. Extracting global minimizers. We explain here how to ex-
tract global minimizers to the problem (1.1) assuming we are in the sit-
uation of Theorem 6.18. That is, y ∈ RN

n
2t is an optimal solution to the

program (6.3) satisfying the rank condition (6.16). Then, as claimed in
Theorem 6.18 (and its proof), pmom

t = pmin, y has a r-atomic representing
measure µ =

∑r
i=1 λiδvi

, where λi > 0,
∑r

i=1 λi = 1, r = rankMs(y),
and VC(Ker Ms(y)) = {v1, . . . , vr} ⊆ Kmin

p , the set of optimal solutions
to (1.1). The question we now address is how to find the vi’s from the
moment matrix Ms(y). We present the method proposed by Henrion and
Lasserre [54], although our description differs in some steps and follows the
implementation proposed by Jibetean and Laurent [60] and presented in
detail in Lasserre et al. [75].

Denote by ỹ the (infinite) sequence of moments of the measure µ.
Then, M(ỹ) is a flat extension of Ms(y). Hence, by Theorem 5.19, I :=
KerM(ỹ) = (KerMs(y)) and any set B ⊆ Tn

s−1 indexing a maximum
nonsingular principal submatrix of Ms−1(y) is a basis of R[x]/I. One
can now determine VC(KerMs(y)) = VC(I) with the eigenvalue method
presented in Section 2.4.

In a first step we determine a subset B ⊆ Tn
s−dK

indexing a maximum
nonsingular principal submatrix of Ms(y). We can find such set B in a
‘greedy manner’, by computing the successive ranks of the north-east corner
principal submatrices of Ms−dK

(y). Starting from the constant monomial
1, we insert in B as many low degree monomials as possible.

In a second step, for each i = 1, . . . , n, we construct the multiplica-
tion matrix Mxi

of the ‘multiplication by xi’ operator mxi
(recall (2.6))

with respect to the basis B of R[x]/I. By definition, for xβ ∈ B, the
xβth column of Mxi

contains the residue of the monomial xix
β modulo I

w.r.t. the basis B. That is, setting Mxi
:= (a

(i)
α,β)xα,xβ∈B, the polynomial

xix
β −∑xα∈B a

(i)
α,βxα belongs to I and thus to KerMs(y). From this we

immediately derive the following explicit characterization for Mxi
from the

moment matrix Ms(y).

Lemma 6.21. Let M0 denote the principal submatrix of Ms(y) indexed
by B and let Ui denote the submatrix of Ms(y) whose rows are indexed by B
and whose columns are indexed by the set xiB := {xix

α | xα ∈ B}. Then,
Mxi

= M−1
0 Ui.
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Given a polynomial h ∈ R[x], the multiplication matrix of the ’mul-
tiplication by h’ operator w.r.t. the basis B is then given by Mh =
h(Mx1 , . . . , Mxn

). In view of Theorem 2.9, the eigenvectors of MT
h are the

vectors ζB,v = (vα)xα∈B with respective eigenvalues h(v) for v ∈ VC(I). A
nice feature of the ideal I = KerM(ỹ) = (KerMs(y)) is that it is (real)
radical. Hence, if the values h(v) for v ∈ VC(I) are all distinct, then the
matrix MT

h is non-derogatory, i.e., its eigenspaces are 1-dimensional and
spanned by the vectors ζB,v (for v ∈ VC(I)) (recall Lemma 2.12). In that
case, one can recover the vectors ζB,v directly from the right eigenvectors
of Mh. Then it is easy - in fact, immediate if B contains the monomials
x1, . . . ,xn - to recover the components of v from the vector ζB,v. According
to [20], if we choose h as a random linear combination of the monomials
x1, . . . ,xn then, with high probability, the values h(v) at the distinct points
of VC(I) are all distinct.

6.8. Software and examples. Several software packages have been
developed for computing sums of squares of polynomials and optimizing
polynomials over semialgebraic sets.
• GloptiPoly, developed by Henrion and Lasserre [53], implements
the moment/SOS hierarchies (6.3), (6.2), and the techniques described
in this section for testing optimality and extracting global optimiz-
ers. See http://www.laas.fr/~henrion/software/gloptipoly/ The
software has been recently updated to treat more general moment prob-
lems; cf. [55].
• SOSTOOLS, developed by Prajna, Papachristodoulou, Seiler and Par-
rilo [113], is dedicated to formulate and compute sums of squares optimiza-
tion programs. See http://www.mit.edu/~parrilo/sostools/

• SparsePOP, developed by Waki, Kim, Kojima and Muramatsu [153],
implements sparse moment/SOS relaxations for polynomial optimiza-
tion problems having some sparsity pattern (see Section 8.1). See
http://www.is.titech.ac.jp/~kojima/SparsePOP/

• Yalmip, developed by Löfberg, is a MATLAB toolbox for rapid
prototyping of optimization problems, which implements in par-
ticular the sum-of-squares and moment based approaches. See
http://control.ee.ethz.ch/~joloef/yalmip.php

We conclude with some small examples. See e.g. [65, 54] for more
examples.

Example 6.22. Consider the problem:

min p(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

−(x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t. (x3 − 3)2 + x4 ≥ 4, (x5 − 3)2 + x6 ≥ 4
x1 − 3x2 ≤ 2, −x1 + x2 ≤ 2, x1 + x2 ≤ 6,
x1 + x2 ≥ 2, 1 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 6,
1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10, x1, x2 ≥ 0.
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As shown in Table 1, GloptiPoly finds the optimum value −310 and a
global minimizer (5, 1, 5, 0, 5, 10) at the relaxation of order t = 2. This
involves then the computation of a SDP with 209 variables, one semidefi-
nite constraint involving a matrix of size 28 (namley, M2(y) � 0) and 16
semidefinite constraints involving matrices size 7 (namely, M1(gjy) � 0,
corresponding to the 16 constraints gj ≥ 0 of degree 1 or 2).

Table 1
Moment relaxations for Example 6.22.

order t rank sequence bound pmom
t solution extracted

1 (1,7) unbounded none
2 (1,1, 21) -310 (5,1,5,0,5,10)

Example 6.23. Consider the problem

min p(x) = −x1 − x2

s.t. x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

As shown in Table 2, GloptiPoly solves the problem at optimality at the
relaxation of order t = 4.

Table 2
Moment relaxations for Example 6.23.

order t rank sequence bound pmom
t solution extracted

2 (1,1,4) -7 none
3 (1,2,2,4) -6.6667 none
4 (1,1,1,1,6) -5.5080 (2.3295,3.1785)

Example 6.24. Consider the problem:

min p(x) = x2
1x

2
2(x

2
1 + x2

2 − 3x2
3) + x6

3

s.t. x2
1 + x2

2 + x2
3 ≤ 1,

of minimizing the Motzkin form over the unit ball. As we see in Table 3,
the moment bounds pmom

t converge to pmin = 0, but optimality cannot be
detected via the rank condition (6.16) since it is never satisfied. This is
to be expected since p has infinitely many global minimizers over the unit
ball. However the criterion (6.15) applies here; indeed GloptiPoly returns
that the relaxed vector x∗ := (yei

)3i=1 (where y is the optimum solution to
the moment relaxation) is feasible (i.e. lies in the unit ball) and reaches
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Table 3
Moment relaxations for Example 6.24.

order rank sequence bound pmom
t value reached

t by moment
vector

3 (1, 4, 9, 13) −0.0045964 7 10−26

4 (1, 4, 10, 20, 29) −0.00020329 3 10−30

5 (1, 4, 10, 20, 34, 44) −2.8976 10−5 3 10−36

6 (1, 4, 10, 20, 34, 56, 84) −6.8376 10−6 6 10−42

7 (1, 4, 10, 20, 35, 56, 84, 120) −2.1569 10−6 4 10−43

the objective value which is mentioned in the last column of Table 3; here
x∗ ∼ 0.

Example 6.25. Consider the problem

min p(x) = x2
1x

2
2(x

2
1 + x2

2 − 3x2
3) + x6

3 + ǫ(x6
1 + x6

2 + x6
3)

s.t. x2
1 + x2

2 + x2
3 ≤ 1,

of minimizing the perturbed Motzkin form over the unit ball. For any ǫ > 0,
pmin = 0 and p is positive, i.e. the origin is the unique global minimizer.
Moreover, pǫ is SOS if and only if ǫ ≥ ǫ∗ ∼ 0.01006 [152]. Hence, as
explained in Example 6.19, it is to be expected that for ǫ < ǫ∗, the rank
condition (6.16) does not hold. This is confirmed in Table 4 which gives
results for ǫ = 0.01. Again the criterion (6.15) applies, i.e. the moment
vector y yields the global minimizer x∗ = (yei

)3i=1, x∗ ∼ 0, and the last
column gives the value of pǫ evaluated at x∗.

Table 4
Moment relxations for Example 6.25.

rank sequence bound pmom
t value reached

t by moment
vector

3 (1, 4, 9, 13) −2.11 10−5 1.67 10−44

4 (1, 4, 10, 20, 35) −1.92 10−9 4.47 10−60

5 (1, 4, 10, 20, 35, 56) 2.94 10−12 1.26 10−44

6 (1, 4, 10, 20, 35, 56, 84) 3.54 10−12 1.5 10−44

7 (1, 4, 10, 20, 35, 56, 84, 120) 4.09 10−12 2.83 10−43

8 (1, 4, 10, 20, 35, 56, 84, 120, 165) 4.75 10−12 5.24 10−44
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7. Application to optimization - Some further selected topics.

7.1. Approximating positive polynomials by sums of squares.
We now come back to the comparison between nonnegative polynomials
and sums of squares of polynomials. As we saw earlier, the parameters
(n, d) for which every nonnegative polynomial of degree d in n variables
is a sum of squares have been characterized by D. Hilbert; namely, they
are (n = 1, d even), (n ≥ 1, d = 2), and (n = 2, d = 4). Thus for any
other pair (n, d) (d even) there exist nonnegative polynomials that cannot
be written as a sum of squares. A natural question is whether there are
many or few such polynomials. Several answers may be given depending
whether the degree and the number of variables are fixed or not. First,
on the negative side, Blekherman [13] has shown that when the degree d is
fixed but the number n of variables grows, then there are significantly more
positive polynomials than sums of squares. More precisely, for d ∈ N even,
consider the cone Hd (resp., Σd) of homogeneous polynomials p ∈ R[x] of
degree d that are nonnegative on Rn (resp., a sum of squares). In order to

compare the two cones, Blekherman considers their sections Ĥd := Hd ∩H
and Σ̂d := Σd ∩ H by the hyperplane H := {p |

∫
Sn−1 p(x)µ(dx) = 1},

where µ is the rotation invariant probability measure on the unit sphere
Sn−1.

Theorem 7.1. [13] There exist constants C1, C2 > 0 depending on d
only such that for any n large enough,

C1n
(d/2−1)/2 ≤

(
vol Ĥd

vol Σ̂d

)1/D

≤ C2n
(d/2−1)/2,

where D :=
(
n+d−1

d

)
− 1.

However, on the positive side, Berg [8] has shown that, when the num-
ber of variables is fixed but the degree is variable, then the cone of sums of
squares is dense in the cone of polynomials nonnegative on [−1, 1]n. While
Berg’s result is existential, Lasserre and Netzer [77] have provided an ex-
plicit and very simple sum of squares approximation, which we present in
Theorem 7.2 below. Previously, Lasserre [71] had given an analogous result
for polynomials nonnegative on the whole space Rn, presented in Theorem
7.3 below. To state the results we need the following polynomials for any
t ∈ N

θt :=

t∑

k=0

n∑

i=1

x2k
i

k!
, Θt := 1 +

n∑

i=1

x2t
i , (7.1)

Theorem 7.2. [77] Let f ∈ R[x] be a polynomial nonnegative on
[−1, 1]n and let Θt be as in (7.1). For any ǫ > 0, there exists t0 ∈ N such
that the polynomial f + ǫΘt is a sum of squares for all t ≥ t0.
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Theorem 7.3. [71] Let f ∈ R[x] be a polynomial nonnegative on Rn

and let θt be as in (7.1). For any ǫ > 0, there exists t0 ∈ N such that f +ǫθt

is a sum of squares for all t ≥ t0.

In both cases the proof relies on a result about existence of a repre-
senting measure, combined with some elementary bounds on the entries
of positive semidefinite moment matrices. For Theorem 7.2 we need only
the (quite elementary) result from Theorem 4.7 about existence of a repre-
senting measure for bounded sequences. On the other hand, for Theorem
7.3, we need the following (non-elementary) result of Carleman (for the
case n = 1) and Nussbaum (for n ≥ 1). Recall that e1, . . . , en denote the
standard unit vectors in Rn. Thus, for y ∈ RN

n

, y2kei
is its entry indexed

by 2kei, i.e. y2kei
= y(0,...,0,2k,0,...,0) where 2k is at the ith position.

Theorem 7.4. [102] Given y ∈ RN
n

, if M(y) � 0 and

∞∑

k=0

y
−1/2k
2kei

= ∞ (i = 1, . . . , n) (7.2)

then y has a (unique) representing measure.

In what follows we first give the proof of Theorem 7.2, which is simpler,
and then we prove Theorem 7.3. We begin with some elementary bounds
from [71, 77] on the entries of Mt(y). As we now see, when Mt(y) � 0,
all entries yα can be bounded in terms of y0 and y(2t,0,...,0), . . ., y(0,...,0,2t),
the entries indexed by the constant monomial 1 and the highest order
monomials x2t

1 , . . . ,x2t
n . For 0 ≤ k ≤ t, set

τk := max(y(2k,0,...,0), . . . , y(0,...,0,2k)) = max
i=1,...,n

y2kei
;

thus τ0 = y0. We will use the inequality y2
α+β ≤ y2αy2β (for α, β ∈ Nn

t ),
which follows from the fact that the submatrix of Mt(y) indexed by {α, β}
is positive semidefinite.

Lemma 7.5. Assume Mt(y) � 0 and n = 1. Then y2k ≤ max(τ0, τt)
for 0 ≤ k ≤ t.

Proof. The proof is by induction on t ≥ 0. If t = 0, 1, the result is
obvious. Assume t ≥ 1 and the result holds for t − 1, i.e. y0, . . . , y2t−2 ≤
max(y0, y2t−2); we show that y0, . . . , y2t ≤ max(y0, y2t). This is obvious if
y0 ≥ y2t−2. Assume now y0 ≤ y2t−2. As y2

2t−2 ≤ y2t−4y2t ≤ y2t−2y2t, we
deduce y2t−2 ≤ y2t and thus y0, . . . , y2t ≤ y2t = max(y0, y2t).

Lemma 7.6. Assume Mt(y) � 0. Then y2α ≤ τk for all |α| = k ≤ t.

Proof. The case n = 1 being obvious, we first consider the case n = 2.
Say s := max|α|=k y2α is attained at y2α∗ . As 2α∗

1 ≥ k ⇐⇒ 2α∗
2 ≤ k,

we may assume w.l.o.g. 2α∗
1 ≥ k. Write 2α∗ = (k, 0) + (2α∗

1 − k, 2α∗
2) =

(k, 0) + (k − 2α∗
2, 2α∗

2). Then y2
2α∗ ≤ y(2k,0)y(2k−4α∗

2 ,4α∗
2). Now y2

2α∗ = s2,
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y(2k−4α∗
2 ,4α∗

2) ≤ s, y(2k,0) ≤ τk, which implies s ≤ τk. This shows the result
in the case n = 2.

Assume now n ≥ 3 and the result holds for n − 1. Thus y2α ≤ τk

if |α| = k and αi = 0 for some i. Assume now 1 ≤ α1 ≤ . . . ≤ αn.
Consider the sequences γ := (2α1, 0, α3 + α2 − α1, α4, . . . , αn) and γ′ :=
(0, 2α2, α3 + α1 − α2, α4, . . . , αn). Thus |γ| = |γ′| = |α| = k, γ + γ′ = 2α.
As γ2 = γ′

1 = 0, we have y2γ , y2γ′ ≤ τk. Hence y2
2α = y2

γ+γ′ ≤ y2γy2γ′ ≤ τ2
k ,

implying y2α ≤ τk.

Corollary 7.7. Assume Mt(y) � 0. Then |yα| ≤ max0≤k≤t τk =
max(τ0, τt).

Proof. Using Lemma 7.5, we see that y(2k,0,...,0) ≤ max(y0, y2t,0,...,0)) ≤
max(τ0, τt), implying τk ≤ max(τ0, τt) and thus max0≤k≤t τk =
max(τ0, τt) =: τ . By Lemma 7.6 we deduce y2α ≤ τ for |α| ≤ t. Consider
now |γ| ≤ 2t. Write γ = α + β with |α|, |β| ≤ t. Then y2

γ ≤ y2αy2β ≤ τ2,
giving |yγ | ≤ τ .

We mention for completeness another result for bounding entries of a
positive semidefinite moment matrix. This result is used in [73] for giv-
ing an explicit set of conditions ensuring that a polynomial p is a sum of
squares, the conditions depending only on the coefficients of p.

Lemma 7.8. [73] If Mt(y) � 0 and y0 = 1, then |yα|1/|α| ≤ τ
1/2t
t for

all |α| ≤ 2t.

Proof. Use induction on t ≥ 1. The result holds obviously for t = 1.
Assume the result holds for t ≥ 1 and let Mt+1(y) � 0, y0 = 1. By

the induction assumption, |yα|1/|α| ≤ τ
1/2t
t for |α| ≤ 2t. By Lemma 7.6,

|yα| ≤ τt+1 for |α| = 2t + 2. We first show τ
1/t
t ≤ τ

1/(t+1)
t+1 . For this, say

τt = y2te1 ; then τ2
t = y2

2te1
≤ y2(t+1)e1

y2(t−1)e1
≤ τt+1τ

(2t−2)/2t
t , which

gives τ
1/t
t ≤ τ

1/(t+1)
t+1 . Remains only to show that |yα|1/|α| ≤ τ

1/t+1
t+1 for

|α| = 2t + 1 (as the case |α| ≤ 2t follows using the induction assumption,
and |α| = 2t + 2 has been settled above). Say, |α| = 2t + 1 and α = β + γ

with |β| = t, |γ| = t + 1. Then y2
α ≤ y2βy2γ ≤ τtτt+1 ≤ τ

t/(t+1)
t+1 τt+1 =

τ
(2t+1)/(t+1)
t+1 , giving the desired result.

The following result is crucial for the proof of Theorem 7.2.

Proposition 7.9. Given a polynomial f ∈ R[x] consider the program

ǫ∗t := inf fT y s.t. Mt(y) � 0, yT Θt ≤ 1 (7.3)

for any integer t ≥ df = ⌈deg(f)/2⌉. Recall the polynomial Θt from (7.1).
Then,

(i) −∞ < ǫ∗t ≤ 0 and the infimum is attained in (7.3).
(ii) For ǫ ≥ 0, the polynomial f + ǫΘt is a sum of squares if and only if

ǫ ≥ −ǫ∗t . In particular, f is a sum of squares if and only if ǫ∗t = 0.
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(iii) If the polynomial f ∈ R[x] is nonnegative on [−1, 1]n, then
limt→∞ ǫ∗t = 0.

Proof. Let y be feasible for the program (7.3). Then 0 ≤
y0, y(2t,0,...,0), . . . , y(0,...,0,2t) ≤ 1 (from the linear constraint yT Θt ≤ 1)
which, using Corollary 7.7, implies |yα| ≤ 1 for all α. Hence the feasible
region of (7.3) is bounded and nonempty (as y = 0 is feasible). Therefore
the infimum is attained in program (7.3) and −∞ < ǫ∗t ≤ 0, showing (i).
One can verify that the dual semidefinite program of (7.3) reads

d∗t := sup
λ≥0

−λ s.t. f + λΘt is a sum of squares.

As the program (7.3) is strictly feasible (choose for y the sequence of mo-
ments of a measure with positive density on Rn, with finite moments up to
order 2t, rescaled so as to satisfy yT Θt ≤ 1), its dual semidefinite program
attains it supremum and there is no duality gap, i.e. ǫ∗t = d∗t . Thus f + ǫΘt

is a sum of squares if and only if −ǫ ≤ d∗t = ǫ∗t , i.e. ǫ ≥ −ǫ∗t , showing (ii).
We now show (iii). Say ǫ∗t = fT y(t), where y(t) is an optimum solu-

tion to (7.3) with, as we saw above, y(t) ∈ [−1, 1]N
n
2t . Complete y(t) to a

sequence ỹ(t) = (y(t), 0, . . . , 0) ∈ [−1, 1]N
n

. As [−1, 1]N
n

is compact, there
exists a converging subsequence (y(tl))l≥0, converging to y∗ ∈ [−1, 1]N

n

in the product topology. In particular, there is coordinate-wise conver-

gence, i.e. (y
(tl)
α )l≥0 converges to y∗

α, for all α. Therefore M(y∗) � 0.
As y∗ ∈ [−1, 1]N

n

, we deduce using Theorem 4.7 that y∗ has a repre-
senting measure µ on [−1, 1]n. In particular, ǫ∗tl

= fT y(tl) converges to
fT y∗ =

∫
[−1,1]n

f(x)µ(dx). By assumption, f ≥ 0 on [−1, 1]n and thus

fT y∗ ≥ 0. On the other hand, fT y∗ ≤ 0 since ǫ∗t ≤ 0 for all t. Thus
fT y∗ = 0. This shows that the only accumulation point of the sequence ǫt

is 0 and thus ǫt converges to 0.

We can now conclude the proof of Theorem 7.2. Let ǫ > 0. By
Proposition 7.9 (iii), limt→∞ ǫ∗t = 0. Hence there exists t0 ∈ N such that
ǫ∗t ≥ −ǫ for all t ≥ t0. Applying Proposition 7.9 (ii), we deduce that f +ǫΘt

is a sum of squares.

As an example, consider the univariate polynomial f = 1 − x2, obvi-
ously nonnegative on [−1, 1]. Then, for ǫ ≥ (t − 1)t−1/tt, the polynomial
f +ǫx2t is nonnegative on R and thus a sum of squares (see [77] for details).

We now turn to the proof of Theorem 7.3, whose details are a bit more
technical. Given an integer M > 0, consider the program

µ∗
M := inf

µ

∫
f(x)µ(dx) s.t.

∫ n∑

i=1

ex2
i µ(dx) ≤ neM2

, (7.4)

where the infimum is taken over all probability measures µ on Rn.
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Lemma 7.10. Let f ∈ R[x] and assume fmin := infx∈Rn f(x) > −∞.
Then µ∗

M ↓ fmin as M → ∞.

Proof. Obviously, the sequence (µ∗
M )M is monotonically non-increasing

and µ∗
M ≥ fmin. Next observe that µ∗

M ≤ inf‖x‖∞≤M f(x) since the Dirac
measure µ = δx at any point x with ‖x‖∞ ≤ M is feasible for (7.4) with
objective value f(x). Now inf‖x‖∞≤M f(x) converges to fmin as M → ∞,
which implies that µ∗

M ↓ fmin as M → ∞.

The idea is now to approach the optimum value of (7.4) via a sequence
of moment relaxations. Namely, for any integer t ≥ df = ⌈deg(f)/2⌉,
consider the semidefinite program

ǫ∗t,M := inf fT y s.t. Mt(y) � 0, y0 = 1, yT θt ≤ neM2

(7.5)

whose dual reads

d∗t,M := sup
γ,λ

γ − λneM2

s.t. λ ≥ 0, γ + λθr is a sum of squares. (7.6)

The next result is crucial for the proof of Theorem 7.3.

Proposition 7.11. Fix M > 0, t ≥ df , and assume fmin > −∞.
The following holds for the programs (7.5) and (7.6).

(i) The optimum is attained in both programs (7.5) and (7.6) and there
is no duality gap, i.e. ǫ∗t,M = d∗t,M .

(ii) ǫ∗t,M ↑ µ∗
M as t → ∞.

Proof. (i) As (7.5) is strictly feasible, its dual (7.6) attains its optimum
and there is no duality gap. The infimum is attained in program (7.5) since

the feasible region is bounded (directly using the constraint yT θt ≤ neM2

together with Corollary 7.7) and nonempty (as y = (1, 0, . . . , 0) is feasible
for (7.5)).

(ii) We begin with observing that (ǫ∗t,M )t is monotonically non-
decreasing; hence limt→∞ ǫ∗t,M = supt ǫ∗t,M . Let µ be feasible for (7.4)
and let y be its sequence of moments. Then, for any integer t ≥ df ,∫

f(x)µ(dx) = fT y, Mt(y) � 0, y0 = 1 and, as
∑∞

k=0 x2k
i /k! = ex2

i , the

constraint
∫ ∑n

i=1 ex2
i µ(dx) ≤ neM2

implies yT θt ≤ neM2

. That is, y is
feasible for (7.5) and thus µ∗

M ≥ ǫ∗t,M . This shows µ∗
M ≥ limt→∞ ǫ∗t,M .

We now show the reverse inequality. For this we first note that if
y is feasible for (7.5), then maxi≤n,k≤t y2kei

≤ t!neM2

=: σt and thus
max|α|≤2t |yα| ≤ σt (by Corollary 7.7). Moreover, for any s ≤ t, |yα| ≤ σs

for |α| ≤ 2s (since the restriction of y to RN
n
2s is feasible for the program

(7.5) with s in place of t).
Say ǫ∗t,M = fT y(t), where y(t) is an optimum solution to (7.5) (which

is attained by (i)). Define ỹ(t) = (y(t), 0 . . . 0) ∈ RN
n

and ŷ(t) ∈ RN
n

by

ŷ
(t)
α := ỹ

(t)
α /σs if 2s − 1 ≤ |α| ≤ 2s, s ≥ 0. Thus each ŷ(t) lies in the

compact set [−1, 1]N
n

. Hence there is a converging subsequence (ŷ(tl))l≥0,
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converging say to ŷ ∈ [−1, 1]N
n

. In particular, liml→∞ ŷ
(tl)
α = ŷα for all

α. Define y∗ ∈ RN
n

by y∗
α := σsŷα for 2s − 1 ≤ |α| ≤ 2s, s ≥ 0. Then

liml→∞ ỹ
(tl)
α = y∗

α for all α and liml→∞ y
(tl)
α = y∗

α for all |α| ≤ 2tl. From

this follows that M(y∗) � 0, y∗
0 = 1, and (y∗)T θr ≤ neM2

for any r ≥ 0. In

particular,
∑∞

k=0

∑n
i=1

y∗
2kei

k! ≤ neM2

, which implies2
∑∞

k=0(y2kei
)−1/2k =

∞ for all i. That is, condition (7.2) holds and thus, by Theorem 7.4,
y∗ has a representing measure µ. As µ is feasible for (7.4), this implies
µ∗

M ≤
∫

f(x)µ(dx) = fT y∗ = liml→∞ fT y(tl) = liml→∞ ǫ∗tl,M
. Hence we

find µ∗
M ≤ liml→∞ ǫ∗tl,M

≤ limt→∞ ǫ∗t,M ≤ µ∗
M and thus equality holds

throughout, which shows (ii).

We can now conclude the proof of Theorem 7.3. We begin with two
easy observations. First it suffices to show the existence of t0 ∈ N for which
f + ǫθt0 is a sum of squares (since this obviously implies that f + ǫθt is a
sum of squares for all t ≥ t0). Second we note that it suffices to show the
result for the case fmin > 0. Indeed, if fmin = 0, consider the polynomial
g := f + nǫ/2 with gmin = nǫ/2 > 0. Hence, for some t0 ∈ N, g + (ǫ/2)θt0

is a sum of squares. As (ǫ/2)(θt0 − n) is a sum of squares, we find that
f + ǫθt0 = g + (ǫ/2)θt0 + (ǫ/2)(θt0 − n) is a sum of squares.

So assume fmin > 0 and fmin > 1/M , where M is a positive integer.
By Proposition 7.11 (ii), ǫ∗tM ,M ≥ µ∗

M − 1/M ≥ fmin − 1/M > 0 for some

integer tM . By Proposition 7.11 (i), we have ǫ∗tM ,M = γM − λMneM2

,
where λM ≥ 0 and f − γM + λMθtM

=: q is a sum of squares. Hence

f +λMθtM
= q+γM is a sum of squares, since γM = nλMeM2

+ǫ∗tM ,M ≥ 0.
Moreover, evaluating at the point 0, we find f(0)− γM + λMn = q(0) ≥ 0,

i.e. f(0)− fmin + fmin − ǫ∗tM ,M −λMneM2

+ λMn ≥ 0. As fmin − ǫ∗tM ,M ≤
1/M , this implies λM ≤ 1/M+f(0)−fmin

n(eM2−1)
. Therefore, limM→∞ λM = 0. We

can now conclude the proof: Given ǫ > 0, choose M in such a way that
fmin > 1/M and λM < ǫ. Then f + ǫθtM

is a sum of squares.

We refer to [69], [77] for further approximation results by sums of
squares for polynomials nonnegative on a basic closed semialgebraic set.

7.2. Unconstrained polynomial optimization. In this section we
come back to the unconstrained minimization problem (1.3) which, given
a polynomial p ∈ R[x], asks for its infimum pmin = infx∈Rn p(x). There
is quite a large literature on this problem; we sketch here only some of
the methods that are most relevant to the topic of this survey. We first
make some general easy observations. To begin with, we may assume that
deg(p) =: 2d is even, since otherwise pmin = −∞. Probably the most
natural idea is to search for global minimizers of p within the critical points
of p. One should be careful however. Indeed p may have infinitely many

2Indeed if ak > 0, C ≥ 1 satisfy ak ≤ Ck! for all k ≥ 1, then ak ≤ Ckk, implying

a
−1/2k
k ≥ C−1/2k/

√
k and thus

P

k≥1 a
−1/2k
k = ∞.
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global minimizers, or p may have none! The latter happens, for instance,
for the polynomial p = x2

1 + (x1x2 − 1)2; then for ǫ > 0, p(ǫ, 1/ǫ) = ǫ2

converges to 0 as ǫ → 0, showing pmin = 0 but the infimum is not attained.
Next, how can one recognize whether p has a global minimizer? As observed
by Marshall [88], the highest degree homogeneous component of p plays an
important role.

Lemma 7.12. [88] For a polynomial p ∈ R[x], let p̃ be its highest
degree component, consisting of the sum of the terms of p with maximum
degree, and let p̃min

S denote the minimum of p̃ over the unit sphere.

(i) If p̃min
S < 0 then pmin = −∞.

(ii) If p̃min
S > 0 then p has a global minimizer. Moreover any global min-

imizer x satisfies ‖x‖ ≤ max
(
1, 1

p̃min
S

∑
1≤|α|<deg(p) |pα|

)
.

Proof. (i) is obvious. (ii) Set deg(p) =: d, p = p̃ + g, where all
terms of g have degree ≤ d − 1. If pmin = p(0), 0 is a global mini-
mizer and we are done. Otherwise let x ∈ Rn with p(x) ≤ p(0). Then,
p̃(x) ≤ g(x) − p(0) ≤ ∑

1≤|α|≤d−1 |pα||xα|. Combined with p̃(x) =

p̃(x/‖x‖)‖x‖d ≥ p̃min
S ‖x‖d, and |xα| ≤ ‖x‖|α| if ‖x‖ ≥ 1, this gives

‖x‖ ≤ max
(

1
p̃min

S

,
∑

|α|<deg(p) |pα|, 1
)
.

No conclusion can be drawn when p̃min
S = 0; indeed p may have a

minimum (e.g. for p = x2
1x

2
2), or a finite infimum (e.g. for p = x2

1 +
(x1x2 − 1)2), or an infinite infimum (e.g. for p = x2

1 + x2).

We now see how we can apply the general relaxation scheme from
Section 6 to the problem (1.3). As there are no constraints, we find just
one lower bound for pmin:

psos
t = pmom

t = psos
d = pmom

d ≤ pmin for all t ≥ d,

with equality psos
d = pmin if and only if p − pmin is a sum of squares.

Indeed, psos
t = psos

d since the degree of a sum of squares decomposition of
p − ρ (ρ ∈ R) is bounded by 2d. Moreover, as (6.3) is strictly feasible, the
supremum is attained in (6.2), there is no duality gap, i.e. psos

t = pmom
t ,

and psos
d = pmin if and only if p − pmin is a sum of squares. Therefore, if

p − pmin is a sum of squares, the infimum pmin of p can be found via the
semidefinite program (6.3) at order t = d. Otherwise, we just find one lower
bound for pmin. One may wonder when is this lower bound nontrivial, i.e.,
when is psos

d 6= −∞, or in other words when does there exist a scalar ρ
for which p − ρ is a sum of squares. Marshall [89] gives an answer which
involves again the highest degree component of p.

Proposition 7.13. [89] Let p ∈ R[x]2d, p̃ its highest degree compo-
nent, and Σn,2d the cone of homogeneous polynomials of degree 2d that are
sums of squares.
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(i) If psos
d 6= −∞ then p̃ is a sum of squares, i.e. p̃ ∈ Σn,2d.

(ii) If p̃ is an interior point of Σn,2d then psos
d 6= −∞.

For instance,
∑n

i=1 x2d
i , (

∑d
i=1 x2

i )
d are interior points of Σn,2d. See

[89] for details.

Example 7.14. Here are some examples taken from [89]. For the
Motzkin polynomial p = pM := x4y2 + x2y4 − 3x2y2 + 1, pmin = 0, p̃ =
x4y2 + x2y4 is a sum of squares, and psos

3 = −∞. Thus the necessary
condition from Proposition 7.13 is not sufficient.

For p = (x − y)2, pmin = psos
1 = 0, and p̃ = p lies on the boundary of

Σ2,2. Thus the sufficient condition of Proposition 7.13 is not necessary.
For p = pM + ǫ(x6 +y6), where pM is the Motzkin polynomial, pmin =

ǫ/(1 + ǫ), p̃ǫ = x4y2 +x2y4 + ǫ(x6 +y6) is an interior point of Σ3,6. Thus
psos

ǫ,3 6= −∞. Yet limǫ→0 psos
ǫ,3 = −∞ for otherwise pM + ρ would be a sum

of squares for some ρ (which is not possible, as observed in Example 3.7).

Thus arises naturally the question of designing alternative relaxation
schemes to get better approximations for pmin. A natural idea is to try
to transform the unconstrained problem (1.3) into a constrained problem.
We now start with the most favourable situation when p has a minimum
and moreover some information is known about the position of a global
minimizer.

Assume p attains its minimum and one can locate a global
minimizer. If p attains its minimum and if some bound R is known on
the Euclidian norm of a global minimizer, then (1.3) can be reformulated
as the constrained minimization problem over the ball

pmin = pball := min p(x) s.t.

n∑

i=1

x2
i ≤ R2. (7.7)

We can now apply the relaxation scheme from Section 6 to the semial-
gebraic set K = {x | ∑n

i=1 x2
i ≤ R2} which obviously satisfies Putinar’s

assumption (3.15); thus the moment/SOS bounds converge to pball = pmin.
This approach seems to work well if the radius R is not too large.

What if no information is known about the norm of a global
minimizer? Nie, Demmel and Sturmfels [99] propose an alternative way of
transforming (1.3) into a constrained problem when p attains its infimum.
Define the gradient ideal of p

Igrad
p :=

( ∂p

∂xi
(i = 1, . . . , n)

)
, (7.8)

as the ideal generated by the partial derivatives of p. Since all global
minimizers of p are critical points, i.e. they lie in VR(Igrad

p ), the (real)
gradient variety of p, the unconstrained minimization problem (1.3) can be
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reformulated as the constrained minimization problem over the gradient
variety

pmin = pgrad := min
x∈VR(Igrad

p )
p(x). (7.9)

Note that the equality pmin = pgrad may not hold if p has no minimum.
E.g. for p = x2

1 +(1−x1x2)
2, pmin = 0 while pgrad = 1 as VC(Igrad

p ) = {0}.
We can compute the moments/SOS bounds obtained by applying the

relaxation scheme from Section 6 to the semialgebraic set VR(Igrad
p ). How-

ever in general this set may not satisfy the assumption (3.15), hence we
cannot apply Theorem 6.8 (which relies on Theorem 3.20) to show the
asymptotic convergence of the moment/SOS bounds to pgrad. Yet asymp-
totic convergence does hold and sometimes even finite convergence. Nie et
al. [99] show the representation results from Theorems 7.15-7.16 below,
for positive (nonnegative) polynomials on their gradient variety as sums of
squares modulo their gradient ideal. As an immediate application, there
is asymptotic convergence (moreover, finite convergence when Igrad

p is rad-
ical) of the moment/SOS bounds from the programs (6.3), (6.2) (applied
to the polynomial constraints ∂p/∂xi = 0 (i = 1, . . . , n)) to the parameter
pgrad (hence to pmin when p is assumed to attain its minimum).

Theorem 7.15. [99] If p(x) > 0 for all x ∈ VR(Igrad
p ), then p is a sum

of squares modulo its gradient ideal Igrad
p , i.e., p = s0 +

∑n
i=1 si∂p/∂xi,

where si ∈ R[x] and s0 is a sum of squares.

Theorem 7.16. [99] Assume Igrad
p is a radical ideal and p(x) ≥ 0

for all x ∈ VR(Igrad
p ). Then p is a sum of squares modulo its gradient ideal

Igrad
p , i.e., p = s0 +

∑n
i=1 si∂p/∂xi, where si ∈ R[x] and s0 is a sum of

squares.

We postpone the proofs of these two results, which need some algebraic
tools, till Section 7.3. The following example of C. Scheiderer shows that
the assumption that Igrad

p is radical cannot be removed in Theorem 7.16.

Example 7.17. Consider the polynomial p = x8 +y8+z8 +M , where
M = x4y2 +x2y4 +z6−3x2y2z2 is the Motzkin form. As observed earlier,
M is nonnegative on R3 but not a sum of squares. The polynomial p is
nonnegative over R3, thus over VR(Igrad

p ), but it is not a sum of squares

modulo Igrad
p . Indeed one can verify that p − M/4 ∈ Igrad

p and that M is

not a sum of squares modulo Igrad
p (see [99] for details); thus Igrad

p is not
radical.

Let us mention (without proof) a related result of Marshall [89] which
shows a representation result related to that of Theorem 7.16 but under a
different assumption.

Theorem 7.18. [89] Assume p attains its minimum and the matrix(
∂2p

∂xi∂xj
(x)
)n

i,j=1
is positive definite at every global minimizer x of p. Then
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p − pmin is a sum of squares modulo Igrad
p .

Summarizing, the above results of Nie et al. [99] show that the pa-
rameter pgrad can be approximated via converging moment/SOS bounds;
when p has a minimum, then pmin = pgrad and thus pmin too can be ap-
proximated.

How to deal with polynomials that do not have a minimum?
A first strategy is to perturb the polynomial in such a way that the per-
turbed polynomial has a minimum. For instance, Hanzon and Jibetean
[50], Jibetean [59] propose the following perturbation

pǫ := p + ǫ
( n∑

i=1

x2d+2
i

)

if p has degree 2d, where ǫ > 0. Then the perturbed polynomial pǫ has a
minimum (e.g. because the minimum of

∑
i x

2d+2
i over the unit sphere is

equal to 1/nd > 0; recall Lemma 7.12) and limǫ→0 pmin
ǫ = pmin.

For fixed ǫ > 0, pmin
ǫ = pgrad

ǫ can be obtained by minimizing pǫ over
its gradient variety and the asymptotic convergence of the moment/SOS
bounds to pgrad

ǫ follows from the above results of Nie et al. [99]. Alter-
natively we may observe that the gradient variety of pǫ is finite. Indeed,
∂pǫ/∂xi = (2d + 2)x2d+1

i + ∂p/∂xi, where deg(∂p/∂xi) < 2d. Hence,
|VC(Igrad

pǫ
)| ≤ dim R[x]/Igrad

pǫ
≤ (2d + 1)n. By Theorem 6.15, we can con-

clude to the finite convergence of the moment/SOS bounds to pgrad
ǫ = pmin

ǫ .
Jibetean and Laurent [60] have investigated this approach and present nu-
merical results. Moreover they propose to exploit the equations defining
the gradient variety to reduce the number of variables in the moment re-
laxations.

Hanzon and Jibetean [50] and Jibetean [59] propose in fact an ex-
act algorithm for computing pmin. Roughly speaking they exploit the fact
(recall Theorem 2.9) that the points of the gradient variety of pǫ can be
obtained as eigenvalues of the multiplication matrices in the quotient space
R[x]/Igrad

pǫ
and they study the behaviour of the limits as ǫ → 0. In partic-

ular they show that when p has a minimum, the limit set as ǫ → 0 of the
set of global minimizers of pǫ is contained in the set of global minimizers
of p, and each connected component of the set of global minimizers of p
contains a point which is the limit of a branch of minimizers of pǫ. Their
method however has a high computational cost and is thus not practical.

Schweighofer [133] proposes a different strategy for dealing with the
case when p has no minimum. Namely he proposes to minimize p over the
following semialgebraic set

K∇p :=

{
x ∈ Rn

∣∣∣∣
( n∑

i=1

(
∂p

∂xi
(x)

)2)( n∑

i=1

x2
i

)
≤ 1

}
,
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which contains the gradient variety. Schweighofer [133] shows that, if
pmin > −∞, then pmin = infx∈K∇p

p(x). Moreover, he shows the following
representation theorem, thus leading to a hierarchy of SOS/moment ap-
proximations for pmin, also in the case when the infimum is not attained;
the result holds under some technical condition, whose precise definition
can be found in [133].

Theorem 7.19. [133] Assume pmin > −∞. Furthermore assume that,
either p has only isolated singularities at infinity (which is always true if
n = 2), or K∇p is compact. Then the following assertions are equivalent.

(i) p ≥ 0 on Rn;

(ii) p ≥ 0 on K∇p;

(iii) ∀ǫ > 0 ∃s0, s1 ∈ Σ p + ǫ = s0 + s1

(
1− (

∑n
i=1(∂p/∂xi)

2)(
∑n

i=1 x2
i )
)
.

7.3. Sums of squares over the gradient ideal. We give here the
proofs for Theorems 7.15 and 7.16 about sums of squares representations
modulo the gradient ideal, following Nie et al. [99] (although our proof
slightly differs at some places). We begin with the following lemma which
can be seen as an extension of Lemma 2.3 about existence of interpolation
polynomials. Recall that a set V ⊆ Cn is a variety if V = VC({p1, . . . , ps})
for some polynomials pi ∈ C[x]. When all pi’s are real polynomials, i.e.
pi ∈ R[x], then V = V := {v | v ∈ V }, i.e. v ∈ V ⇔ v ∈ V .

Lemma 7.20. Let V1, . . . , Vr be pairwise disjoint varieties in Cn such
that Vi = V i := {v | v ∈ Vi} for all i. There exist polynomials p1, . . . , pr ∈
R[x] such that pi(Vj) = δi,j for i, j = 1, . . . r; that is, pi(v) = 1 if v ∈ Vi

and pi(v) = 0 if v ∈ Vj (j 6= i).

Proof. The ideal Ii := I(Vi) ⊆ C[x] is radical with VC(Ii) = Vi. We
have VC(Ii +

⋂
j 6=i Ij) = VC(Ii) ∩ VC(

⋂
j 6=i Ij) = VC(Ii) ∩ (

⋃
j 6=i VC(Ij)) =

Vi ∩ (
⋃

j 6=i Vj) = ∅. Hence, by Hilbert’s Nullstellensatz (Theorem 2.1 (i)),
1 ∈ Ii +

⋂
j 6=i Ij ; say 1 = qi + pi, where qi ∈ Ii and pi ∈

⋂
j 6=i Ij . Hence

pi(Vj) = δi,j (since qi vanishes on Vi and pi vanishes on Vj for j 6= i). As
Vi = V i for all i, we can replace pi by its real part to obtain polynomials
satisfying the properties of the lemma.

A variety V ⊆ Cn is irreducible if any decomposition V = V1 ∪ V2,
where V1, V2 are varieties, satisfies V1 = V or V2 = V . It is a known
fact that any variety can be written (in a unique way) as a finite union
of irreducible varieties (known as its irreducible components) (see e.g. [21,

Chap. 4]). Let VC(Igrad
p ) =

⋃L
l=1 Vl be the decomposition of the gradient

variety into irreducible varieties. The following fact is crucial for the proof.

Lemma 7.21. The polynomial p is constant on each irreducible com-
ponent of its gradient variety VC(Igrad

p ).
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Proof. Fix an irreducible component Vl. We use the fact3 that Vl

is connected by fintely many differentiable paths. Given x, y ∈ Vl, as-
sume that there exists a continuous differentiable function ϕ : [0, 1] → Vl

with ϕ(0) = x and ϕ(1) = y; we show that p(x) = p(y), which will im-
ply that p is constant on Vl. Applying the mean value theorem to the
function t 7→ g(t) := p(ϕ(t)), we find that g(1) − g(0) = g′(t∗) for some

t∗ ∈ (0, 1). Now g(t) =
∑

α pαϕ(t)α, g′(t) =
∑

α pα(
∑n

i=1 αiϕ
′
i(t)

ϕ(t)
ϕi(t)

) =
∑n

i=1
∂p
∂xi

(ϕ(t))ϕ′
i(t), which implies g′(t∗) = 0 as ϕ(t∗) ∈ Vl ⊆ VC(Igrad

p ).
Therefore, 0 = g(1) − g(0) = p(y) − p(x).

We now group the irreducible components of VC(Igrad
p ) in the follow-

ing way:

VC(Igrad
p ) = W0 ∪ W1 ∪ . . . ∪ Wr ,

where W0 :=
⋃

l|p(Vl)∈C\R
Vl (thus W0 ∩ Rn = ∅), p takes a constant

value ai on each Wi (i = 1, . . . , r), and a1, . . . , ar are all distinct. Then,
W0, W1, . . . , Wr are pairwise disjoint, a1, . . . , ar ∈ R, and W i = Wi for
0 ≤ i ≤ r. Hence we can apply Lemma 7.20 and deduce the existence of
polynomials p0, p1, . . . , pr ∈ R[x] satisfying pi(Wj) = δi,j for i, j = 0, . . . , r.

Lemma 7.22. p = s0 modulo I(W0), where s0 is a sum of squares.

Proof. We apply the Real Nullstellensatz (Theorem 2.1 (ii)) to the
ideal I := I(W0) ⊆ R[x]. As VR(I) = W0 ∩ Rn = ∅, we have R

√
I =

I(VR(I)) = R[x]. Hence, −1 ∈ R
√
I; that is, −1 = s + q, where s is a sum

of squares and q ∈ I. Writing p = p1 − p2 with p1, p2 sums of squares,
we find p = p1 + sp2 + p2q, where s0 := p1 + sp2 is a sum of squares and
p2q ∈ I = I(W0).

We can now conclude the proof of Theorem 7.16. By assumption,
p is nonnegative on VR(Igrad

p ). Hence, the values a1, . . . , ar taken by p
on W1, . . . , Wr are nonnegative numbers. Consider the polynomial q :=
s0p

2
0 +

∑r
i=1 aip

2
i , where p0, p1, . . . , pr are derived from Lemma 7.20 as

indicated above and s0 is as in Lemma 7.22. By construction, q is a sum of
squares. Moreover, p− q vanishes on VC(Igrad

p ) = W0∪W1∪ . . .∪Wr, since
q(x) = s0(x) = p(x) for x ∈ W0 (by Lemma 7.22) and q(x) = ai = p(x)
for x ∈ Wi (i = 1, . . . , r). As Igrad

p is radical, we deduce that p − q ∈
I(VC(Igrad

p )) = Igrad
p , which shows that p is a sum of squares modulo Igrad

p

and thus concludes the proof of Theorem 7.16.

We now turn to the proof of Theorem 7.15. Our assumption now
is that p is positive on VR(Igrad

p ); that is, a1, . . . , ar > 0. Consider a

3This is a nontrivial result of algebraic geometry; we thank M. Schweighofer for
communicating us the following sketch of proof. Let V be an irreducible variety in Cn.
Then V is connected with respect to the usual norm topology of Cn (see e.g. [136]).
Viewing V as a connected semialgebraic set in R2n, it follows that V is connected by a
semialgebraic continuous path (see e.g. [14]). Finally, use the fact that a semialgebraic
continuous path is piecewise differentiable (see [151, Chap. 7, 2, Prop. 2.5.]).
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primary decomposition of the ideal Igrad
p (see [21, Chap. 4]) as Igrad

p =⋂k
h=1 Ih. Then each variety VC(Ih) is irreducible and thus contained in

Wi for some i = 0, . . . , r. For i = 0, . . . , r, set Ji :=
⋂

h|VC(Ih)⊆Wi
Ih.

Then, Igrad
p = J0 ∩ J1 ∩ . . . ∩ Jr, with VC(Ji) = Wi for 0 ≤ i ≤ r. As

VC(Ji + Jj) = VC(Ji) ∩ VC(Jj) = Wi ∩ Wj = ∅, we have Ji + Jj = R[x]
for i 6= j. The next result follows from the Chinese reminder theorem, but
we give the proof for completeness.

Lemma 7.23. Given s0, . . . , sr ∈ R[x], there exists s ∈ R[x] satisfying
s − si ∈ Ji (i = 0, . . . , r). Moreover, if each si is a sum of squares then s
too can be chosen to be a sum of squares.

Proof. The proof is by induction on r ≥ 1. Assume first r = 1. As
J0+J1 = R[x], 1 = u0+u1 for some u0 ∈ J0, u1 ∈ J1. Set s := u2

0s1+u2
1s0;

thus s is a sum of squares if s0, s1 are sums of squares. Moreover, s− s0 =
u2

0s1 + s0(u
2
1 − 1) = u2

0s1 − u0(u1 + 1)s0 ∈ J0. Analogously, s − s1 ∈ J1.
Let s be the polynomial just constructed, satisfying s − s0 ∈ J0 and

s − s1 ∈ J1. Consider now the ideals J0 ∩ J1, J2, . . . ,Jr. As (J0 ∩ J1) +
Ji = R[x] (i ≥ 2), we can apply the induction assumption and deduce the
existence of t ∈ R[x] for which t−s ∈ J0∩J1, t−si ∈ Ji (i ≥ 2). Moreover,
t is a sum of squares if s, s2, . . . , sr are sums of squares, which concludes
the proof.

The above lemma shows that the mapping

R[x]/Igrad
p = R[x]/ ∩r

i=0 Ji → ∏r
i=0 R[x]/Ji

s mod Igrad
p 7→ (si mod Ji|i = 0, . . . , r)

is a bijection. Moreover if, for all i = 0, . . . , r, p − si ∈ Ji with si sum
of squares, then there exists a sum of squares s for which p − s ∈ Igrad

p .
Therefore, to conclude the proof of Theorem 7.15, it suffices to show that
p is a sum of squares modulo each ideal Ji. For i = 0, as VR(J0) = ∅, this
follows from the Real Nullstellensatz (same argument as for Lemma 7.22).
The next lemma settles the case i ≥ 1 and thus the proof of Theorem 7.15.

Lemma 7.24. p is a sum of squares modulo Ji, for i = 1, . . . , r.

Proof. By assumption, p(x) = ai > 0 for all x ∈ VC(Ji) = Wi. Hence
the polynomial u := p/ai −1 vanishes on VC(Ji) and thus u ∈ I(VC(Ji)) =√
J i; that is, using Hilbert’s Nullstellensatz (Theorem 2.1 (i)), um ∈ Ji

for some integer m ≥ 1. The identity

1 + u =

(
m−1∑

k=0

(
1/2

k

)
uk

)2

+ qum (7.10)

(where q ∈ SpanR(ui | i ≥ 0)) gives directly that p/ai = 1 + u is a

sum of squares modulo Ji. To show (7.10), write
(∑m−1

k=0

(
1/2
k

)
uk
)2

=
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∑2m−2
j=0 cju

j, where cj :=
∑

k

(
1/2
k

)(
1/2
j−k

)
with the summation over k sat-

isfying max(0, j − m + 1) ≤ k ≤ min(j, m − 1). We now verify that
cj = 1 for j = 0, 1 and cj = 0 for j = 2, . . . , m − 1, which implies
(7.10). For this fix 0 ≤ j ≤ m − 1 and consider the univariate polyno-

mial gj :=
∑j

h=0

(
t

h

)(
t

j−h

)
−
(
2t
j

)
∈ R[t]; as gj vanishes at all t ∈ N, gj is

identically zero and thus gj(1/2) = 0, which gives cj =
(
1
j

)
for j ≤ m − 1,

i.e. c0 = c1 = 1 and cj = 0 for 2 ≤ j ≤ m − 1.

8. Exploiting algebraic structure to reduce the problem size.
In the previous sections we have seen how to construct moment/SOS ap-
proximations for the infimum of a polynomial over a semialgebraic set.
The simplest instance is the unconstrained minimization problem (1.3) of
computing pmin (= infx∈Rn p(x)) where p is a polynomial of degree 2d,
its moment relaxation pmom

d (= inf pT y s.t. Md(y) � 0, y0 = 1), and its
SOS relaxation psos

d (= sup ρ s.t. p − ρ is a sum of squares). Recall that
pmom

d = psos
d . To compute pmom

d = psos
d one needs to solve a semidefinite

program involving a matrix indexed by Nn
d , thus of size

(
n+d

d

)
. This size

becomes prohibitively large as soon as n or d is too large. It is thus of
crucial importance to have methods permitting to reduce the size of this
semidefinite program. For this one can exploit the specific structure of the
problem at hand. For instance, the problem may have some symmetry,
or may have some sparsity pattern, or may contain equations, all features
which can be used to reduce the number of variables and sometimes the
size of the matrices involved. See e.g. Parrilo [106] for an overview about
exploiting algebraic structure in SOS programs. Much research has been
done in the recent years about such issues, which we cannot cover in detail
in this survey. We will only treat certain chosen topics.

8.1. Exploiting sparsity.

Using the Newton polynomial. Probably one of the first results
about exploiting sparsity is a result of Reznick [118] about Newton poly-
topes of polynomials. For a polynomial p =

∑
|α|≤d pαxα, its Newton

polytope is defined as

N(p) := conv(α ∈ Nn
d | pα 6= 0).

Reznick [118] shows the following properties for Newton polytopes.

Theorem 8.1. [118] Given p, q, f1, . . . , fm ∈ R[x].
(i) N(pq) = N(p)+N(q) and, if p, q are nonnegative on Rn then N(p) ⊆

N(p + q).
(ii) If p =

∑m
j=1 f2

j , then N(fj) ⊆ 1
2N(p) for all j.

(iii) N(p) ⊆ conv(2α | p2α > 0).

We illustrate the result on the following example taken from [106].

Example 8.2. Consider the polynomial p = (x4
1 + 1)(x4

2 + 1)(x4
3 +

1)(x4
4 + 1) + 2x1 + 3x2 + 4x3 + 5x4 of degree 2d = 16 in n = 4 variables.
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Suppose we wish to find a sum of squares decomposition p =
∑

j f2
j . A

priori, each fj has degree at most 8 and thus may involve the 495 =
(
4+8
4

)

monomials xα with |α| ∈ N4
8. The polynomial p is however very sparse; it

has only 20 terms, thus much less than the total number 4845 =
(
4+16
16

)
of

possible terms. As a matter of fact, using the above result of Reznick, one
can restrict the support of fj to the 81 monomials xα with α ∈ {0, 1, 2}4.
Indeed the Newton polytope of p is the cube [0, 4]4, thus 1

2N(p) = [0, 2]4

and N4 ∩ 1
2N(p) = {0, 1, 2}4.

Kojima, Kim and Waki [61] further investigate effective methods for
reducing the support of polynomials entering the sum of square decompo-
sition of a sparse polynomial, which are based on Theorem 8.1 and further
refinements.

Structured sparsity on the constraint and objective poly-
nomials. We now consider the polynomial optimization problem (1.1)
where some sparsity structure is assumed on the polynomials p, g1, . . . , gm.
Roughly speaking we assume that each gj uses only a small set of variables
and that p can be separated into polynomials using only these small speci-
fied sets of variables. Then under some assumption on these specified sets,
when searching for a decomposition p = s0 +

∑m
j=1 sjgj with all sj sums

of squares, we may restrict our search to polynomials sj using again the
specified sets of variables. We now give the precise definitions.

For a set I ⊆ {1, . . . , n}, let xI denote the set of variables {xi | i ∈ I}
and R[xI ] the polynomial ring in those variables. Assume {1, . . . , n} =
I1 ∪ . . . ∪ Ik where the Ih’s satisfy the property

∀h ∈ {1, . . . , k − 1} ∃r ∈ {1, . . . , h} Ih+1 ∩ (I1 ∪ . . . ∪ Ih) ⊆ Ir . (8.1)

Note that (8.1) holds automatically for k ≤ 2. We make the following
assumptions on the polynomials p, g1, . . . , gm:

p =

k∑

h=1

ph where ph ∈ R[xIh
] (8.2)

{1, . . . , m} = J1 ∪ . . . ∪ Jk and gj ∈ R[xIh
] for j ∈ Jh, 1 ≤ h ≤ k. (8.3)

Remark 8.3. If I1, . . . , Ik are the maximal cliques of a chordal graph,
then k ≤ n and (8.1) is satisfied (after possibly reordering the Ih’s) and is
known as the running intersection property. Cf. e.g. [12] for details about
chordal graphs. The following strategy is proposed in [153] for identifying
a sparsity structure like (8.2)-(8.3). Define the (correlative sparsity) graph
G = (V, E) where V := {1, . . . , n} and there is an edge ij ∈ E if some term
of p uses both variables xi,xj , or if both variables xi,xj are used by some
gl (l = 1, . . . , m). Then find a chordal extension G′ of G and choose the
maximal cliques of G′ as I1, . . . , Ik.
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Example 8.4. For instance, the polynomials p = x2
1x2x3 + x3x

2
4 +

x3x5 + x6, g1 = x1x2 − 1, g2 = x2
1 + x2x3 − 1, g3 = x2 + x2

3x4, g4 =
x3 + x5, g5 = x3x6, g6 = x2x3 satisfy conditions (8.2), (8.3) after setting
I1 = {1, 2, 3}, I2 = {2, 3, 4}, I3 = {3, 5}, I4 = {3, 6}.

Example 8.5. The so-called chained singular function: p =∑n−3
i=1 (xi +10xi+1)

2 +5(xi+2−xi+3)
2 +(xi+1−2xi+2)

4 +10(xi−10xi+3)
4

satisfies (8.2) with Ih = {h, h+1, h+2, h+3} (h = 1, . . . , n− 3). Cf. [153]
for computational results.

Let us now formulate the sparse moment and SOS relaxations for
problem (1.1) for any order t ≥ max(dp, dg1 , . . . , dgm

). For α ∈ Nn, set
supp(α) = {i ∈ {1, . . . , n} | αi ≥ 1}. For t ∈ N and a subset I ⊆ {1, . . . , n}
set ΛI

t := {α ∈ Nn
t | supp(α) ⊆ I}. Finally set Λt := ∪k

h=1Λ
Ih

t . The sparse
moment relaxation of order t involves a variable y ∈ RΛ2t , thus having en-
tries yα only for α ∈ Nn

2t with supp(α) contained in some Ih; moreover, it
involves the matrices Mt(y, Ih), where Mt(y, Ih) is the submatrix of Mt(y)
indexed by ΛIh

t . The sparse moment relaxation of order t reads as follows

p̂mom
t := inf pT y s.t. y0 = 1, Mt(y, Ih) � 0 (h = 1, . . . , k)

Mt−dgj
(gjy, Ih) � 0 (j ∈ Jh, h = 1, . . . , k)

(8.4)

where the variable y lies in RΛ2t . The corresponding sparse SOS relaxation
of order t reads

p̂sos
t := sup ρ s.t. p − ρ =

∑k
h=1

(
uh +

∑
j∈Jh

ujhgj

)

uh, ujh (j ∈ Jh) sums of squares in R[xIh]

deg(uh), deg(ujhgj) ≤ 2t (h = 1, . . . , k).

(8.5)

Obviously,

p̂sos
t ≤ p̂mom

t ≤ pmin, p̂mom
t ≤ pmom

t , p̂sos
t ≤ psos

t .

The sparse relaxation is in general weaker than the dense relaxation. How-
ever when all polynomials ph, gj are quadratic then the sparse and dense
relaxations are equivalent (cf. [153, §4.5], also [98, Th. 3.6]). We sketch
the details below.

Lemma 8.6. Assume p =
∑k

h=1 ph where ph ∈ R[xIh
] and the sets Ih

satisfy (8.1). If deg(ph) ≤ 2 for all h and p is a sum of squares, then p has
a sparse sum of squares decomposition, i.e. of the form

p =

k∑

h=1

sh where sh ∈ R[xIh
] and sh is SOS. (8.6)

Proof. Consider the dense/sparse SOS/moment relaxations of order 1

of the problem minx∈Rn p(x), with optimum values psos
1 , pmom

1 , p̂sos
1 , p̂mom

1 .
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The strict feasibility of the moment relaxations implies that psos
1 = pmom

1 ,

p̂sos
1 = p̂mom

1 , the optimum is attained in the dense/sparse SOS relaxations,
p SOS ⇐⇒ psos

1 ≥ 0, and p has a sparse SOS decomposition (8.6) ⇐⇒
p̂sos
1 ≥ 0. Thus it suffices to show that pmom

1 ≤ p̂mom
1 . For this let y be

feasible for the program defining p̂mom
1 , i.e. y0 = 1, M1(y, Ih) � 0 for all

h = 1, . . . , k. Using a result of Grone et al. [44] (which claims that any
partial positive semidefinite matrix whose specified entries form a chordal
graph can be completed to a fully specified positive semidefinite matrix),
we can complete y to a vector ỹ ∈ RN

n
2 satisfying M1(ỹ) � 0. Thus ỹ is

feasible for the program defining pmom
1 , which shows pmom

1 ≤ p̂mom
1 .

Corollary 8.7. Consider the problem (1.1) and assume that (8.1),

(8.2), (8.3) hold. If all ph, gj are quadratic, then pmom
1 = p̂mom

1 and psos
1 =

p̂sos
1 .

Proof. Assume y is feasible for the program defining p̂mom
1 ; that is,

y0 = 1, M1(y, Ih) � 0 (h = 1, . . . , k) and (gjy)0(=
∑

α(gj)αyα) ≥ 0 (j =
1, . . . , m). Using the same argument as in the proof of Lemma 8.6 we can
complete y to ỹ ∈ RN

n
2 such that M1(ỹ) � 0 and thus ỹ is feasible for the

program defining pmom
1 , which shows pmom

1 ≤ p̂mom
1 . Assume now ρ ∈ R

is feasible for the program defining psos
1 ; that is, p − ρ = s0 +

∑m
j=1 sjgj

where s is a sum of squares in R[x] and sj ∈ R+. Now the polynomial
p−ρ−∑m

j=1 sjgj is separable (i.e. can be written as a sum of polynomials in
R[xIh

]); hence, by Lemma 8.6, it has a sparse sum of squares decomposition,

of the form
∑k

h=1 sh with sh ∈ R[xIh
] SOS. This shows that ρ is feasible

for the program defining p̂sos
1 , giving the desired inequality psos

1 ≤ p̂sos
1 .

Example 8.8. We give an example (mentioned in [98, Ex. 3.5])
showing that the result of Lemma 8.6 does not hold for polynomials of
degree more than 2. Consider the polynomial p = p1 + p2, where p1 =
x4

1 + (x1x2 − 1)2 and p2 = x2
2x

2
3 + (x2

3 − 1)2. Waki [152] verified that

0 = p̂sos
2 < psos

2 = pmin ∼ 0.84986.

Waki et al. [153] have implemented the above sparse SDP relax-
ations. Their numerical results show that they can be solved much
faster than the dense relaxations and yet they give very good approxi-
mations of pmin. Lasserre [72, 74] proved the theoretical convergence, i.e.

limt→∞ p̂sos
t = limt→∞ p̂mom

t = pmin, under the assumption that K has a
nonempty interior and that a ball constraint R2

h −∑i∈Jh
xi ≥ 0 is present

in the description of K for each h = 1, . . . , k. Kojima and Muramatsu [62]
proved the result for compact K with possibly empty interior. Grimm,
Netzer and Schweighofer [43] give a simpler proof, which does not need the
presence of ball constraints in the description of K but instead assumes that
each set of polynomials gj (j ∈ Jh) generates an Archimedean module.

Theorem 8.9. [43] Assume that, for each h = 1, . . . , k, the quadratic
module Mh := M(gj | j ∈ Jh) generated by gj (j ∈ Jh) is Archimedean.
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Assume that (8.1) holds and that p, g1, . . . , gm satisfy (8.2), (8.3). If p
is positive on the set K = {x ∈ Rn | gj(x) ≥ 0 (j = 1, . . . , m)}, then

p ∈ M1 + . . . + Mk; that is, p =
∑k

h=1

(
uh +

∑
j∈Jh

ujhgj

)
, where uh, ujh

are sums of squares in R[xIh
].

Before proving the theorem we state the application to asymptotic
convergence.

Corollary 8.10. Under the assumptions of Theorem 8.9, we have

limt→∞ p̂sos
t = limt→∞ p̂mom

t = pmin.

Proof. Fix ǫ > 0. As p − pmin + ǫ is positive on K and satisfies (8.2),

we deduce from Theorem 8.9 that p− pmin + ǫ ∈∑k
h=1 Mh. Thus pmin − ǫ

is feasible for (8.5) for some t. Hence, for every ǫ > 0, there exists t ∈ N

with pmin − ǫ ≤ p̂sos
t ≤ pmin. This shows that limt→∞ p̂sos

t = pmom.

Proof of Theorem 8.9. We give the proof of [43] which is elementary
except it uses the following special case of Schmüdgen’s theorem (Theorem
3.16): For p ∈ R[x],

p>0 on {x | R2−
n∑

i=1

x2
i ≥ 0}=⇒∃ s0, s1 ∈ Σ p = s0+s1(R

2−
n∑

i=1

x2
i ). (8.7)

We start with some preliminary results.

Lemma 8.11. Let C ⊆ R be compact. Assume p = p1 + . . .+ pk where
ph ∈ R[xIh

] (h = 1, . . . , k) and p > 0 on Cn. Then p = f1 + . . . + fk where
fh ∈ R[xIh

] and fh > 0 on CIh (h = 1, . . . , k).

Proof. We use induction on k ≥ 2. Assume first k = 2. Let ǫ > 0 such
that p = p1 + p2 ≥ ǫ on Cn. Define the function F on RI1∩I2 by

F (y) := min
x∈CI1\I2

p1(x, y) − ǫ

2
for y ∈ RI1∩I2 .

The function F is continuous on CI1∩I2 . Indeed for y, y′ ∈ CI1∩I2 and
x, x′ ∈ CI1\I2 minimizing respectively p1(x, y) and p1(x

′, y′), we have

|F (y) − F (y′)| ≤ max(|p1(x, y) − p1(x, y′)|, |p1(x
′, y) − p1(x

′, y′)|),

implying the uniform continuity of F on CI1∩I2 since p1 is uniform contin-
uous on CI1 . Next we claim that

p1(x, y)−F (y) ≥ ǫ

2
, p2(y, z)+F (y) ≥ ǫ

2
∀x ∈ RI1\I2 , y ∈ RI1∩I2 , z ∈ RI2\I1 .

The first follows from the definition of F . For the second note that p2(y, z)+
F (y) = p2(y, z) + p1(x, y) − ǫ

2 (for some x ∈ CI1\I2), which in turn is
equal to p(x, y, z) − ǫ

2 ≥ ǫ − ǫ
2 = ǫ

2 . By the Stone-Weierstrass theorem, F
can be uniformly approximated by a polynomial f ∈ R[xI1∩I2 ] satisfying
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|F (y) − f(y)| ≤ ǫ
4 for all y ∈ CI1∩I2 . Set f1 := p1 − f and f2 := p2 + f .

Thus p = f1 + f2; f1 > 0 on CI1 since f1(x, y) = p1(x, y) − f(y) =
p1(x, y) − F (y) + F (y) − f(y) ≥ ǫ

2 − ǫ
4 = ǫ

4 ; f2 > 0 on CI2 since f2(y, z) =
p2(y, z) + f(y) = p2(y, z) + F (y) + f(y) − F (y) ≥ ǫ

2 − ǫ
4 = ǫ

4 . Thus the
lemma holds in the case k = 2.

Assume now k ≥ 3. Write Ĩ := ∪k−1
h=1Ih, p̃ := p1 + . . . + pk−1 ∈ R[xĨ ],

so that p = p̃ + fk. By the above proof, there exists f ∈ R[xĨ∩Ik
] such

that p̃ − f > 0 on C Ĩ and pk + f > 0 on CIk . Using (8.1), it follows that
Ĩ ∩ Ik ⊆ Ih0 for some h0 ≤ k − 1. Hence f ∈ R[xIh0

] ∩ R[xIk
] and p̃ − f

is a sum of polynomials in R[xIh
] (h = 1, . . . , k − 1). Using the induction

assumption for the case k − 1, we deduce that p̃ − f = f1 + . . . + fk−1

where fh ∈ R[xIh
] and fh > 0 on CIh for each h ≤ k − 1. This gives

p = p̃ + pk = p̃− f + f + pk = f1 + . . . + fk−1 + f + pk which is the desired
conclusion since f + pk ∈ R[xIk

] and f + pk > 0 on CIk .

Lemma 8.12. Assume p = p1 + . . . + pk where ph ∈ R[xIh
] and p > 0

on the set K. Let B be a bounded set in Rn. There exist t ∈ N, λ ∈ R with
0 < λ ≤ 1, and polynomials fh ∈ R[xIh

] such that fh > 0 on B and

p =

m∑

j=1

(1 − λgj)
2tgj + f1 + . . . + fk. (8.8)

Proof. Choose a compact set C ⊆ R such that B ⊆ Cn and choose
λ ∈ R such that 0 < λ ≤ 1 and λgj(x) ≤ 1 for all x ∈ Cn and j = 1, . . . , m.
For t ∈ N set

Ft := p −
m∑

j=1

(1 − λgj)
2tgj .

Obviously Ft ≤ Ft+1 on Cn. First we claim

∀x ∈ Cn ∃t ∈ Nn Ft(x) > 0. (8.9)

We use the fact that (1−λgj(x))2tgj(x) goes to 0 as t goes to ∞ if gj(x) ≥ 0,
and to ∞ otherwise. If x ∈ K then limt→∞ Ft(x) = p(x) and thus Ft(x) > 0
for t large enough. If x ∈ Cn \ K then limt→∞ Ft(x) = ∞ and thus
Ft(x) > 0 again for t large enough. This shows (8.9). Next we claim

∃t ∈ N ∀x ∈ Cn Ft(x) > 0. (8.10)

By (8.9), for each x ∈ Cn there exists an open ball Bx containing x and
tx ∈ N such that Ftx

> 0 on Bx. Thus Cn ⊆ ∪x∈CnBx. As Cn is compact,
we must have Cn ⊆ Bx1 ∪ . . . ∪ BxN

for finitely many xi. As Ft > 0 on
Bxi

for all t ≥ txi
, we deduce that Ft > 0 on Cn for all t ≥ maxi=1,...,N txi

,
which shows (8.10). Hence we have found the decomposition p =

∑m
j=1(1−

λgj)
2tgj + Ft where Ft > 0 on Cn. As Ft is a sum of polynomials in



SUMS OF SQUARES, MOMENTS AND POLYNOMIAL OPTIMIZATION 95

R[xIh
] and Ft > 0 on Cn, we can apply Lemma 8.11 and deduce that

Ft = f1 + . . . + fk where fh ∈ R[xIh
] and fh > 0 on CIh and thus on B.

Thus (8.8) holds.

We can now conclude the proof of Theorem 8.9. As each module Mh

is Archimedean, we can find R > 0 for which R2−∑i∈Ih
x2

i ∈ Mh for each
h = 1, . . . , k. By assumption, p > 0 on K. We apply Lemma 8.12 to the
closed ball B in Rn of radius R. Thus we find a decomposition as in (8.8).
As fh > 0 on B we deduce that fh ∈ Mh using (8.7). Finally observe that∑m

j=1(1 − λgj)
2tgj =

∑k
h=1 uh where uh :=

∑
j∈Jh

(1 − λgj)
2tgj ∈ Mh.

This concludes the proof of Theorem 8.9.

Extracting global minimizers. In some cases one is also able to
extract global minimizers for the original problem (1.1) from the sparse
SDP relaxation (8.4). Namely assume y is an optimum solution to the
sparse moment ralaxation (8.4) and that the following rank conditions hold:

rankMs(y, Ih) = rankMs−ah
(y, Ih) ∀h = 1, . . . , k, (8.11)

rankMs(y, Ih ∩ Ih′) = 1 ∀h 6= h′ = 1, . . . , k with Ih ∩ Ih′ 6= ∅, (8.12)

setting ah := maxj∈Jh
dgj

. Then we can apply the results from Sections 5.2,
6.6 to extract solutions. Namely for each h ≤ k, by (8.11), the restriction

of y to RΛ
Ih
2t has a unique representing measure with support ∆h ⊆ RIh .

Moreover, by (8.12), if Ih ∩ Ih′ 6= ∅, then the restriction of y to RΛ
Ih∩I

h′
2t

has a unique representing measure which is a Dirac measure at a point
x(hh′) ∈ RIh∩Ih′ . Therefore, any x(h) ∈ ∆h, x(h′) ∈ ∆h′

coincide on Ih∩Ih′ ,

i.e. x
(h)
i = x

(h′)
i = x

(hh′)
i for i ∈ Ih ∩ Ih′ . Therefore any point x∗ ∈ Rn

obtained by setting x∗
i := x

(h)
i (i ∈ Ih) for some x(h) ∈ ∆h, is an optimum

solution to the original problem (1.1). The rank conditions (8.11)-(8.12)
are however quite restrictive.

Here is another situation when one can extract a global minimizer;
namely when (1.1) has a unique global minimizer. Assume that for all t
large enough we have a near optimal solution y(t) to the sparse moment
relaxation of order t; that is, y(t) is feasible for (8.4) and pT y(t) ≤ p̂mom

t +
1/t. Lasserre [72] shows that, if problem (1.1) has a unique global minimizer

x∗, then the vectors (y
(t)
ei )n

i=1 converge to the global minimizer x∗ as t goes
to ∞.

SparsePOP software. Waki, Kim, Kojima, Muramatsu, and Sug-
imoto have developed the software SparsePOP, which implements the
sparse moment and SOS relaxations (8.4)-(8.5) proposed in [153] for
the problem (1.1). The software can be downloaded from the website
http://www.is.titech.ac.jp/~kojima/SparsePOP/.

We also refer to [153] where another technique is proposed, based on
perturbing the objective function in (1.1) which, under some conditions,
permits the extraction of an approximate global minimizer.
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For a detailed presentation of several examples together with compu-
tational numerical results, see in particular [153]; see also [98], and [97] for
instances arising from sensor network localization (which is an instance of
the distance realization problem described in Section 1).

8.2. Exploiting equations. Here we come back to the case when the
semialgebraic set K is as in (2.5), i.e. there are explicit polynomial equa-
tions h1 = 0, . . . , hm0 = 0 present in its decription. Let J := (h1, . . . , hm0)
be the ideal generated by these polynomials. As noted in Section 6.2
one can formulate SOS/moment bounds by working in the quotient ring
R[x]/J , which leads to a saving in the number of variables and thus in the
complexity of the SDP’s to be solved. Indeed suppose we know a (linear)
basis B of R[x]/J , so that R[x] = SpanR(B) ⊕ J . Then, for p ∈ R[x],

p SOS mod J ⇐⇒ p =
∑

l u2
l + q with ul ∈ SpanR(B), q ∈ J . (8.13)

(This is obvious: If p =
∑

l f
2
l + g with fl ∈ R[x], g ∈ J , write fl = ul + vl

with ul ∈ SpanR(B) and vl ∈ J , so that p =
∑

l u
2
l + q after setting

q := g +
∑

l v
2
l + 2ulvl ∈ J .) Hence to check the existence of a SOS

decomposition modulo J , we can apply the Gram-matrix method from
Section 3.3 working with matrices indexed by B (or a subset of it) instead
of the full set of monomials. Moreover, when formulating the moment
relaxations, one can use the equations hj = 0 to eliminate some variables
within y = (yα)α. Let us illustrate this on an example (taken from [106]).

Example 8.13. Suppose we want to minimize the polynomial p =
10−x2

1−x2 over {(x, y) ∈ R2 | g1 := x2
1 + x2

2 − 1 = 0} (the unit circle). To
get a lower bound on pmin, one can compute the largest ρ for which p − ρ
is SOS modulo the ideal J = (x2

1 + x2
2 − 1). As B := {xi

1,x2x
i
1 | i ≥ 0}

is a basis of R[x]/J (it is the set of standard monomials w.r.t. a graded
lex monomial ordering), one can first try to find a decomposition as in
(8.13) using only monomials in the subset {1,x1,x2} ⊆ B. Namely, find
the largest scalar ρ for which

10 − x2
1 − x2 − ρ =




1
x1

x2




T 


a b c
b d e
c e f




︸ ︷︷ ︸
X�0




1
x1

x2


 mod J

= a + f + (d − f)x2
1 + 2bx1 + 2cx2 + 2ex1x2 mod J

giving 10−ρ−x2
1−x2 = a+f +(d−f)x2

1+2bx1+2cx2+2ex1x2. Equating
coefficients in both sides, we find

X =




10 − f − ρ 0 −1/2
0 f − 1 0

−1/2 0 f


 .
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One can easily verify that the largest ρ for which X � 0 is ρ = 35/4,
obtained for f = 1, in which case X = LT L with L =

(
−1/2 0 1

)
,

giving p− 35/4 = (x2 − 1/2)2 mod J . This shows pmin ≥ 35/4. Equality
holds since p(x1, x2) = 35/4 for (x1, x2) = (±

√
7/2,−1/2).

On the moment side, the following program

inf 10 − y20 − y01 s.t.




1 y10 y01

y10 y20 y11

y01 y11 1 − y20


 � 0

gives a lower bound for pmin. Here we have used the condition 0 = (g1y)00 =
y20 + y02 − y00 stemming from the equation x2

1 + x2
2 − 1 = 0, which thus

permits to eliminate the variable y02. One can easily check that the opti-
mum of this program is again 35/4, obtained for y10 = y11 = 0, y01 = 1/2,
y20 = 3/4.

The zero-dimensional case. When J is zero-dimensional, B is a
finite set; say B = {b1, . . . , bN} where N := dim R[x]/J ≥ |VC(J )|. For
convenience assume B contains the constant monomial 1, say b1 = 1. By
Theorem 6.15, there is finite convergence of the SOS/moment hierarchies
and thus problem (1.1) can be reformulated as the semidefinite program
(6.2) or (6.3) for t large enough. Moreover the SOS bound

psos = sup ρ s.t. p − ρ ∈ M(g1, . . . , gm,±h1, . . . ,±hm0)
= sup ρ s.t. p − ρ =

∑m
j=0 sjgj mod J for some sj ∈ Σ

can be computed via a semidefinite program involving N × N matrices in
view of (the argument for) (8.13), and psos = pmin by Theorem 6.8, since
the quadratic module M(g1, . . . , gm,±h1, . . . ,±hm0) is Archimedean as J
is zero-dimensional. Therefore, psos = pmom = pmin.

We now give a direct argument for equality pmom = pmin, relying
on Theorem 5.1 (about finite rank moment matrices, instead of Putinar’s
theorem) and giving an explicit moment SDP formulation for (1.1) using
N × N matrices; see (8.15). Following [81], we use a so-called combina-
torial moment matrix which is simply a moment matrix in which some
variables are eliminated using the equations hj = 0. For f ∈ R[x], resB(f)
denotes the unique polynomial in SpanR(B) such that f − resB(f) ∈ J .
Given y ∈ RN , define the linear operator Ly on SpanR(B) (≃ R[x]/J ) by

Ly(
∑N

i=1 λibi) :=
∑N

i=1 λiyi (λ ∈ RN ) and extend Ly to a linear operator
on R[x] by setting Ly(f) := Ly(resB(f)) (f ∈ R[x]). Then define the N×N
matrix MB(y) (the combinatorial moment matrix of y) whose (i, j)th entry
is Ly(bibj). Consider first for simplicity the problem of minimizing p ∈ R[x]
over VR(J ), obviously equivalent to minimizing resB(p) over VR(J ). With

resB(p) :=
∑N

i=1 cibi where c ∈ RN , we have p(v) = [resB(p)](v) = cT ζB,v

∀v ∈ VR(J ), after setting ζB,v := (bi(v))N
i=1. Hence

pmin = min
x∈VR(J )

p(x) = min cT y s.t. y ∈ conv(ζB,v | v ∈ VR(J )). (8.14)
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The next result implies a semidefinite programming formulation for (8.14)
and its proof implies pmom = pmin.

Proposition 8.14. [81, Th. 14] A vector y ∈ RN lies in the polytope
conv(ζB,v | v ∈ VR(J )) if and only if MB(y) � 0 and y1 = 1.

Proof. Let U denote the N × |Nn| matrix whose αth column is
the vector containing the coordinates of resB(xα) in the basis B. De-
fine ỹ := UT y ∈ RN

n

with ỹα = Ly(x
α) ∀α ∈ Nn. One can verify

that M(ỹ) = UT MB(y)U , J ⊆ KerM(ỹ), and ỹT vec(p) = yT c with

resB(p) =
∑N

i=1 cibi. Consider the following assertions (i)-(iv):
(i) y ∈ R+(ζB,v | v ∈ VR(J )); (ii) MB(y) � 0; (iii) M(ỹ) � 0; and
(iv) ỹ ∈ R+(ζv | v ∈ VR(J )). Then, (i) =⇒ (ii) [since MB(ζB,v) =
ζB,vζT

B,v � 0]; (ii) =⇒ (iii) [since M(ỹ) = UT MB(y)U ]; (iii) =⇒ (iv) [by
Theorem 5.1, since rankM(ỹ) < ∞ as J ⊆ KerM(ỹ)]; and (iv) =⇒ (i),
because ỹ =

∑
v∈VR(J ) avζv =⇒ y =

∑
v∈VR(J ) avζB,v [since

∑
v avbi(v) =∑

v avvec(bi)
T ζv = vec(bi)

T ỹ =
∑

α(bi)αLy(x
α) = Ly(bi) = yi]. Finally,

as b1 = 1, y1 = 1 means
∑

v av = 1, corresponding to having a convex
combination when av ≥ 0.

Inequalities gj ≥ 0 are treated in the usual way; simply add the con-
ditions MB(gjy) � 0 to the system MB(y) � 0, y1 = 1, after setting

gjy := MB(y)c(j) where resB(gj) =
∑N

i=1 c
(j)
i bi, c(j) = (c

(j)
i )N

i=1. Summa-
rizing we have shown

pmin = min cT y s.t. y1 = 1, MB(y) � 0, MB(gjy) � 0 ( ∀j ≤ m). (8.15)

This idea of using equations to reduce the number of variables has been
applied e.g. by Jibetean and Laurent [60] in relation with unconstrained
minimization. Recall (from Section 7.2, page 85) that for p ∈ R[x]2d,
pmin = infx∈Rn p(x) can be approximated by computing the minimum of p
over the variety VR(J ) with J := ((2d+2)x2d+1

i +∂p/∂xi (i = 1, . . . , n)) for
small ǫ > 0. Then J is zero-dimensional, B = {xα | 0 ≤ αi ≤ 2d ∀i ≤ n}
is a basis of R[x]/J , and the equations in J give a direct algorithm for
computing residues modulo J and thus the combinatorial moment matrix
MB(y). Such computation can however be demanding for large n, d. We
now consider the 0/1 case where the residue computation is trivial.

The 0/1 case. A special case, which is particularly relevant to ap-
plications in combinatorial optimization, concerns the minimization of a
polynomial p over the 0/1 points in a semialgebraic set K. In other words,
the equations x2

i − xi = 0 (i = 1, . . . , n) are present in the description of
K; thus J = (x2

1 − x1, . . . ,x
2
n − xn) with VC(J ) = {0, 1}n. Using the

equations x2
i = xi, we can reformulate all variables yα (α ∈ Nn) in terms

of the 2n variables yβ (β ∈ {0, 1}n) via yα = yβ with βi := min(αi, 1) ∀i.
With P(V ) denoting the collection of all subsets of V := {1, . . . , n}, the

set B := {xI :=
∏

i∈I xi | I ∈ P(V )} is a basis of R[x]/J and dim R[x]/J =
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|P(V )| = 2n. It is convenient to index a combinatorial moment matrix
MB(y) and its argument y by the set P(V ). The matrix MB(y) has a
particularly simple form, since its (I, J)th entry is yI∪J ∀I, J ∈ P(V ). Set

∆V := conv(ζB,v | v ∈ {0, 1}n) ⊆ RP(V ). (8.16)

We now give a different, elementary, proof4 for Proposition 8.14.

Lemma 8.15. ∆V = {y ∈ RP(V ) | y∅ = 1, MB(y) � 0} = {y ∈ RP(V ) |
y∅ = 1,

∑
J⊆V |I⊆J(−1)|J\I|yJ ≥ 0 ∀I ⊆ V }.

Proof. Let ZB be the 2n ×2n matrix5 with columns the vectors ζB,v =
(
∏

i∈I vi)I∈P(V ) (v ∈ {0, 1}n). Given y ∈ RP(V ), let D denote the diagonal

matrix whose diagonal entries are the coordinates of the vector Z−1
B y. As

MB(y) = ZBDZT
B (direct verification, using the fact that J is radical),

MB(y) � 0 ⇐⇒ D � 0 ⇐⇒ Z−1
B y ≥ 0 ⇐⇒ y = ZB(Z−1

B y) is a conic
combination of the vectors ζB,v (v ∈ {0, 1}n). Finally use the form of Z−1

B

mentioned in the footnote.

Example 8.16. Consider the stable set problem. Using the formula-
tion (1.5) for α(G), we derive using Lemma 8.15 that α(G) is given by the
program

max
y∈RP(V )

∑

i∈V

y{i} s.t. y∅ = 1, MB(y) � 0, y{i,j} = 0 (ij ∈ E). (8.17)

Thus α(G) can be computed via a semidefinite program with a matrix of
size 2n, or via an LP with 2n linear inequalities and variables. As this is
too large for practical purpose, one can instead consider truncated combi-
natorial moment matrices MBt

(y), indexed by Bt := {xI | I ∈ P(V ), |I| ≤
t} ⊆ B, leading to the following upper bound on α(G)

max
∑

i∈V

y{i} s.t. y∅ = 1, MBt
(y) � 0, y{i,j} = 0 (ij ∈ E). (8.18)

For t = 1 this upper bound is the well known theta number ϑ(G) introduced
by Lovász [85]. See [78, 83] and references therein for more details.

Example 8.17. Consider the max-cut problem, introduced in (1.8).
We are now dealing with the ideal J = (x2

1 − 1, . . . ,x2
n − 1) with VC(J ) =

{±1}n. The above treatment for the 0/1 case extends in the obvious way

4This proof applies more general to any zero-dimensional radical ideal J (cf. [81]).
5This matrix is also known as the Zeta matrix of the lattice P(V ) of subsets of

V = {1, . . . , n} and its inverse Z−1
B as the Möbius matrix; cf. [86]. This fact motivates

the name Zeta vector chosen in [81] for the vectors ζB,v and by extension for the vectors
ζv. We may identify each v ∈ {0, 1}n with its support J := {i ∈ {1, . . . , n} | vi = 1}; the
(I, J)th entry of ZB (resp., of Z−1

B ) is 1 (resp., is (−1)|J\I|) if I ⊆ J and 0 otherwise.
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to the ±1 case after defining MB(y) := (yI∆J)I,J∈P(V ) (I∆J denotes the
symmetric difference of I, J). For any integer t,

max
∑

ij∈E

(wij/2)(1 − y{i,j}) s.t. y∅ = 1, MBt
(y) = (yI∆J)|I|,|J|≤t � 0

gives an upper bound for mc(G, w), equal to it when t = n; moreover,
mc(G, w) can reformulated6 as

max
∑

ij∈E

(wij/2)(1 − y{i,j}) s.t. y∅ = 1,
∑

J⊆V

(−1)|I∩J|yJ ≥ 0 ∀I ⊆ V.

For t = 1, the above moment relaxation is the celebrated SDP relaxation
for max-cut used by Goemans and Williamson [42] for deriving the first
nontrivial approximation algorithm for max-cut (still with the best perfor-
mance guarantee as of today). Cf. e.g. [78, 79, 83] and references therein
for more details.

Several other combinatorial methods have been proposed in the litera-
ture for constructing hierarchies of (LP or SDP) bounds for pmin in the 0/1
case; in particular, by Sherali and Adams [137] and by Lovász and Schri-
jver [86]. It turns out that the hierarchy of SOS/moment bounds described
here refines these other hierarchies; see [78, 83] for a detailed comparison.

Exploiting sparsity in the 0/1 case. Here we revisit exploiting
sparsity in the 0/1 case. Namely, consider problem (1.1) where the equa-
tions x2

i = xi (i ≤ n) are present in the description of K and there is a
sparsity structure, i.e. (8.1), (8.2), (8.3) hold. By Corollary 8.10 there is
asymptotic convergence to pmin of the sparse SOS/moment bounds. We
now give an elementary argument showing finite convergence, as well as
a sparse semidefinite programming (and linear programming) formulation
for (1.1).

Given v ∈ {0, 1}n with support J = {i ∈ V | vi = 1}, it is convenient
to rename ζB,v as ζV

J ∈ {0, 1}P(V ) (thus with Ith entry 1 if I ⊆ J and
0 otherwise, for I ∈ P(V )). Extend the notation (8.16) to any U ⊆ V ,
setting ∆U := conv(ζU

J | J ⊆ U) ⊆ RP(U). The next lemma7 shows that
two vectors in ∆I1 and in ∆I2 can be merged to a new vector in ∆I1∪I2

when certain obvious compatibility conditions hold.

Lemma 8.18. Assume V = I1 ∪ . . . ∪ Ik where the Ih’s satisfy (8.1)

and, for 1 ≤ h ≤ k, let y(h) ∈ ∆Ih
satisfying y

(h)
I = y

(h′)
I for all I ⊆

Ih ∩ Ih′ , 1 ≤ h, h′ ≤ k. Then there exists y ∈ ∆V which is a common

extension of the y(h)’s, i.e. yI = y
(h)
I for all I ⊆ Ih, 1 ≤ h ≤ k.

6Use here the analogue of Lemma 8.15 for the ±1 case which claims MB(y) =
(yI∆J )I,J⊆V � 0 ⇐⇒

P

J∈P(V )(−1)|I∩J|yJ ≥ 0 for all I ∈ P(V ) (cf. [79]).
7Lasserre [72] uses the analogue of this result for non-atomic measures, which is a

nontrivial result, while the proof in the 0/1 case is elementary.
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Proof. Consider first the case k = 2. Set I0 := I1∩I2 and, for h = 1, 2,
write y(h) =

∑
I⊆Ih

λh
I ζIh

I =
∑

H⊆I0

∑
I⊆Ih|I∩I0=H λh

I ζIh

I for some λh
I ≥ 0

with
∑

I⊆Ih
λh

I = 1. Taking the projection on RP(I0), we obtain

∑

H⊆I0

( ∑

I⊆I1|I∩I0=H

λ1
I

)
ζI0
H =

∑

H⊆I0

( ∑

J⊆I2|J∩I0=H

λ2
J

)
ζI0
H ,

which implies
∑

I⊆I1|I∩I0=H λ1
I =

∑
J⊆I2|J∩I0=H λ2

J =: λH ∀H ⊆ I0, since

the vectors ζI0
H (H ⊆ I0) are linearly independent. One can verify that

y :=
∑

H⊆I0|λH>0

1

λH

∑

I⊆I1,J⊆I2|I∩I0=J∩I0=H

λ1
Iλ

2
JζI1∪I2

I∪J ∈ RP(I1∪I2)

lies in ∆I1∪I2 and that y extends each y(h), h = 1, 2.
In the general case k ≥ 2 we show, using induction on j, 1 ≤ j ≤ k, that

there exists z(j) ∈ ∆I1∪...∪Ij
which is a common extension of y(1), . . . , y(j).

Assuming z(j) has been found, we derive from the above case k = 2 applied
to z(j) and y(j+1) the existence of z(j+1).

Corollary 8.19. Assume V = I1 ∪ . . . ∪ Ik where (8.1) holds, let
P0 := ∪k

h=1P(Ih) and y ∈ RP0 with y∅ = 1. Then, y has an extension
ỹ ∈ ∆V ⇐⇒ MB(y, Ih) := (yI∪J)I,J∈P(Ih) � 0 for all h = 1, . . . , k.

Proof. Directly from Lemma 8.18 combined with Lemma 8.15.

As an application one can derive an explicit sparse LP formulation
for several graph optimization problems for partial κ-trees; we illustrate
this on the stable set and max-cut problems. Let G = (V, E) be a graph
satisfying

V = I1 ∪ . . . ∪ Ik and (8.1) holds, (8.19)

∀ij ∈ E ∃h ∈ {1, . . . , k} s.t. i, j ∈ Ih. (8.20)

First consider the formulation (1.5) for the stability number α(G); as
(8.20) holds, this formulation satisfies the sparsity assumptions (8.2) and
(8.3). Hence, using Lemma 8.15 combined with Corollary 8.19, we deduce
that α(G) can be obtained by maximizing the linear objective function∑

i∈V y{i} over the set of y ∈ RP0 satisfying y∅ = 1, y{i,j} = 0 for ij ∈ E,
and any one of the following equivalent conditions (8.21) or (8.22)

MB(y, Ih) � 0 for all 1 ≤ h ≤ k, (8.21)
∑

J∈P(Ih)|I⊆J

(−1)|J\I|yJ ≥ 0 for all I ∈ P(Ih), 1 ≤ h ≤ k. (8.22)

More generally, given weights ci (i ∈ V ) attached to the nodes of G, one can
find α(G, c), the maximum weight

∑
i∈S ci of a stable set S, by maximizing
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the linear objective function
∑

i∈V ciy{i} over the above LP. Analogously,
the objective function in the formulation (1.8) of the max-cut problem
satisfies (8.2) and thus the max-cut value mc(G, w) can be obtained by
maximizing the linear objective function

∑
ij∈E(wij/2)(1− y{i,j}) over the

set of y ∈ RP0 satisfying y∅ = 1 and
∑

J∈P(Ih)

(−1)|I∩J|yJ ≥ 0 for all I ∈ P(Ih), 1 ≤ h ≤ k. (8.23)

With maxk
h=1 |Ih| ≤ κ, we find for both the stable set and max-cut problems

an LP formulation involving O(k2κ) linear inequalities and variables. This
applies in particular when G is a partial κ-tree (i.e. G is a subgraph of a
chordal graph with maximum clique size κ). Indeed, then (8.19)-(8.20) hold
with maxh |Ih| ≤ κ and k ≤ n, and thus α(G, c), mc(G, w) can be computed
via an LP with O(n2κ) inequalities and variables. As an application, for
fixed κ, α(G, c) and mc(G, w) can be computed in polynomial time8 for the
class of partial κ-trees. This is a well known result; cf. eg. [15, 146, 155].

8.3. Exploiting symmetry. Another useful property that can be
exploited to reduce the size of the SOS/moment relaxations is to use the
presence of structural symmetries in the polynomials p, g1, . . . , gm. This
relies on combining ideas from group representation and invariance the-
ory, as explained in particular in the work of Gaterman and Parrilo [41]
(see also Vallentin [149]). We will only sketch some ideas illlustrated on
some examples as a detailed treatment of this topic is out of the scope of
this paper.

Group action. Let G be a finite group acting on RN (N ≥ 1) via
an action ρ0 : G → GL(RN ). This induces an action ρ : G → Aut(SymN )
on SymN , the space of N × N symmetric matrices, defined by ρ(g)(X) :=
ρ0(g)T Xρ0(g) for g ∈ G, X ∈ SymN . This also induces an action on PSDN ,
the set of N ×N positive semidefinite matrices. We assume here that each
ρ0(g) is an orthogonal matrix. Then, a matrix X ∈ RN×N is invariant
under action of G, i.e. ρ(g)(X) = X ∀g ∈ G, if and only if X belongs to
the commutant algebra

AG := {X ∈ RN×N | ρ0(g)X = Xρ0(g) ∀g ∈ G}. (8.24)

Note that the commutant algebra also depends on the specific action ρ0.

Invariant semidefinite program. Consider a semidefinite program

max 〈C, X〉 s.t. 〈Ar , X〉 = br (r = 1, . . . , m), X ∈ PSDN , (8.25)

in the variable X ∈ SymN , where C, Ar ∈ SymN and br ∈ R. Assume
that this semidefinite program is invariant under action of G; that is, C is

8in fact, in strongly polynomial time, since all coefficients in (8.22), (8.23) are 0,±1;
see [128, §15.2].
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invariant, i.e. C ∈ AG, and the feasible region is globally invariant, i.e. X
feasible for (8.25) =⇒ ρ(g)(X) feasible for (8.25) ∀g ∈ G. Let X be feasible
for (8.25). An important consequence of the convexity of the feasible region
is that the new matrix X0 := 1

|G|

∑
g∈G ρ(g)(X) is again feasible; moreover

X0 is invariant under action of G and it has the same objective value as
X . Therefore, we can w.l.o.g. require that X is invariant in (8.25), i.e. we
can add the constraint X ∈ AG (which is linear in X) to (8.25) and get an
equivalent program.

Action induced by permutations. An important special type of
action is when G is a subgroup of SN , the group of permutations on
{1, . . . , N}. Then each g ∈ SN acts naturally on RN by ρ0(g)(x) :=
(xg(i))

N
i=1 for x = (xi)

N
i=1 ∈ RN , and on RN×N by ρ(g)(X) :=

(Xg(i),g(j))
N
i,j=1 for X = (Xi,j)

N
i,j=1; that is, ρ(g)(X) = MgXMT

g after
defining Mg as the N × N matrix with (Mg)i,j = 1 if j = g(i) and 0
otherwise.

For (i, j) ∈ {1, . . . , N}2, its orbit under action of G is the set
{(g(i), g(j)) | g ∈ G}. Let ω denote the number of orbits of {1, . . . , N}2

and, for l = 1, . . . , ω, define the N × N matrix D̃l by (D̃l)i,j := 1 if the
pair (i, j) belongs to the lth orbit, and 0 otherwise. Following de Klerk,

Pasechnik and Schrijver [33], define Dl := D̃l√
〈D̃l,D̃l〉

for l = 1, . . . , ω, the

multiplication parameters γl
i,j by

DiDj =

ω∑

l=1

γl
i,jDl for i, j = 1, . . . , ω,

and the ω × ω matrices L1, . . . , Lω by (Ll)i,j := γi
l,j for i, j, k = 1, . . . , ω.

Then the commutant algebra from (8.24) is

AG =
{ ω∑

l=1

xlDl | xl ∈ R

}

and thus dimAG = ω.

Theorem 8.20. [33] The mapping Dl 7→ Ll is a ∗-isomorphism,
known as the regular ∗-representation of AG. In particular, given
x1, . . . , xω ∈ R,

ω∑

l=1

xlDl � 0 ⇐⇒
ω∑

l=1

xlLl � 0. (8.26)

An important application of this theorem is that it provides an explicit
equivalent formulation for an invariant SDP, using only ω variables and a
matrix of order ω. Indeed, assume (8.25) is invariant under action of G.
Set c := (〈C, Dl〉)ω

l=1 so that C =
∑ω

l=1 clDl, and ar := (〈Ar , Dl〉)ω
l=1. As
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observed above the matrix variable X can be assumed to lie in AG and
thus to be of the form X =

∑ω
l=1 xlDl for some scalars xl ∈ R. Therefore,

using (8.26), (8.25) can be equivalently reformulated as

max

ω∑

l=1

clxl s.t. aT
r x = br (r = 1, . . . , m),

ω∑

l=1

xlLl � 0. (8.27)

The new program (8.27) involves a ω × ω matrix and ω variables and can
thus be much more compact than (8.25). Theorem 8.20 is used in [33]
to compute the best known bounds for the crossing number of complete
bipartite graphs. It is also applied in [82] to the stable set problem for the
class of Hamming graphs as sketched below.

Example 8.21. Given D ⊆ {1, . . . , n}, let G(n,D) be the graph
with node set P(V ) (the collection of all subsets of V = {1, . . . , n}) and
with an edge (I, J) when |I∆J | ∈ D. (Computing the stability number of
G(n,D) is related to finding large error correcting codes in coding theory;
cf. e.g. [82, 129]). Consider the moment relaxation of order t for α(G(n,D))

as defined in (8.18); note that it involves a matrix of size O(
(
|P(V )|

t

)
) =

O((2n)t), which is exponentially large in n. However, as shown in [82],
this semidefinite program is invariant under action of the symmetric group
Sn, and there are O(n22t−1−1) orbits. Hence, by Theorem 8.20, there is

an equivalent SDP whose size is O(n22t−1−1), thus polynomial in n for any
fixed t, which implies that the moment upper bound on α(G(n,D)) can be
computed in polynomial time for any fixed t.

Block-diagonalization. Theorem 8.20 gives a first, explicit, symme-
try reduction for matrices in AG. Further reduction is possible. Indeed,
using Schur’s lemma from representation theory (cf. e.g. Serre [135]), it
can be shown that all matrices in AG can be put in block-diagonal form
by a linear change of coordinates. Namely, there exists a unitary complex
matrix T and positive integers h, n1, . . . , nh, m1, . . . , mh such that the set
T ∗AGT := {T ∗XT | X ∈ AG} coincides with the set of the block-diagonal
matrices




C1 0 . . . 0
0 C2 . . . 0
...

...
. . .

...
0 0 . . . Ch


 ,

where each Ci (i = 1, . . . , h) is a block-diagonal matrix with mi identical
blocks on its diagonal, all equal to some Bi ∈ Rni×ni . The above pa-
rameters have the following interpretation: N =

∑h
i=1 mini, dimAG =∑h

i=1 n2
i , there are h nonequivalent irreducible representations θ1, . . . , θh

for the group G, with respective representation dimensions n1, . . . , nh so
that ρ = m1θ1 ⊕ . . . ⊕ mhθh, where m1, . . . , mh are the multiplicities. We
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refer to Gaterman and Parrilo [41], Vallentin [149] for details and further
references therein. To be able to apply this for practical computation one
needs to know the explicit block-diagonalization. Several examples are
treated in detail in [41]. Here is a small (trivial) example as illustration.

Example 8.22. Consider the semidefinite program

min d + f s.t. X :=




a b c
b d e
c e f


 � 0, d + f + 2e − b − c = 0 (8.28)

It is invariant under action of the group {1, σ} ∼ S2, where σ per-
mutes simultaneously the last two rows and columns of X . Thus we
may assume in (8.28) that X is invariant under this action, i.e. d = f
and b = c. This reduces the number of variables from 6 to 4. Next
we give the explicit block-diagonalization. Namely, consider the orthog-

onal matrix T :=




1 0 0
0 u u
0 u −u


 where u := 1/

√
2, and observe that

T ∗XT =




a
√

2b 0√
2b d + e 0
0 0 d − e


.

We now mention the following example due to Schrijver [129], dealing
with the block-diagonalization of the Terwilliger algebra.

Example 8.23. Consider the permutation group Sn acting on V =
{1, . . . , n}. Then each g ∈ Sn acts in the obvious way on P(V ) (by g(I) :=
{g(i) | i ∈ I} for I ⊆ V ) and thus on matrices indexed by P(V ). The orbit
of (I, J) ∈ P(V )×P(V ) depends on the triple (|I|, |J |, |I ∩ J |). Therefore,
the commutant algebra, consisting of the matrices X ∈ RP(V )×P(V ) that
are invariant under action of Sn, is

{ ∑

i,j,t∈N

λt
i,jM

t
i,j | λt

i,j ∈ R

}
,

known as the Terwilliger algebra. Here M t
i,j denotes the matrix indexed

by P(V ) with (I, J)th entry 1 if |I| = i, |J | = j and |I ∩ J | = t, and 0
otherwise. Schrijver [129] has computed the explicit block-diagonalization
for the Terwilliger algebra and used it for computing sharp SDP bounds
for the stability number α(G(n,D)), also considered in Example 8.21. As
explained in [81] this new bound lies between the moment bound of order 1
and the moment bound of order 2. See also [149] for an exposition of
symmetry reduction with application to the Terwilliger algebra.

Symmetry in polynomial optimization. When the polynomial op-
timization problem (1.1) is invariant under action of some finite group G,
it is natural to search for relaxation schemes that inherit the symmetry
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pattern of the polynomials p, g1, . . . , gm. For instance, if p is a symmetric
polynomial which is a SOS, one may wonder about the existence of a sum of
symmetric squares. One has to be careful however. For instance, as noted
in [41], the univariate polynomial p = x2 + (x − x3)2 = x6 − 2x4 + 2x2

is invariant under the action x 7→ −x, but there is no sum of square de-
composition p =

∑
l u

2
l where each ul is invariant under this action as

well (for otherwise, ul should be a polynomial of degree 3 in x2, an obvious
contradiction). Yet symmetry of p does imply some special symmetry struc-
ture for the squares; we refer to Gaterman and Parrilo [41] for a detailed
account.

Jansson et al. [58] study how symmetry carries over to the moment
relaxations of problem (1.1). Say, the polynomials p, g1, . . . , gm are invari-
ant under action of a group G ⊆ Sn; i.e. p(x) = p(ρ0(g)(x)) ∀g ∈ G,
where ρ0(g)(x) = (xg(i))

n
i=1, and analogously for the gj ’s. For instance the

following problem, studied in [58],

min

n∑

i=1

xq
i s.t.

n∑

i=1

xj
i = bj (j = 1, . . . , m) (8.29)

with q ∈ N, bj ∈ R, falls in this setting with G = Sn. Then some symmetry
carries over to the moment relaxations (6.3). Indeed, if x is a global mini-
mizer of p over K, then each ρ0(g)(x) (for g ∈ G) too is a global minimizer.
Thus the sequence y of moments of the measure µ := 1

|G|

∑
g∈G δρ0(g)(x)

is feasible for any moment relaxation, with optimum value pmin. In other
words, we can add the invariance condition

yα = yρ0(g)(α), i.e. y(α1,...,αn) = y(αg(1),...,αg(n)) ∀g ∈ G

on the entries of variable y to the formulation of the moment relaxation
(6.3) of any order t. For instance, when G = Sn, one can require that
ye1 = . . . = yen

, i.e. all yα take a common value for any |α| = 1, that all
yα take a common value for any |α| = 2, etc. Thus the moment matrix of
order 1 is of the form

M1(y) =




a b b b . . . b
b c d d . . . d
b d c d . . . d
...

...
. . .

. . .
. . .

...
b d . . . d c d
b d . . . d d c




.

It is explained in [58] how to find the explicit block-diagonalization for
such symmetric Mt(y) (t = 1, 2, etc). This is not difficult in the case
t = 1; using a Schur complement with respect to the upper left corner, one
deduces easily that M1(y) � 0 ⇐⇒ c+(n− 1)d−nb2/a ≥ 0 and c− d ≥ 0.
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The details for t = 2 are already more complicated and need information
about the irreducible representations of the symmetric group Sn.

In conclusion, exploiting symmetry within polynomial optimization
and, more generally, semidefinite programming, has spurred recently lots
of interesting research activity, with many exciting new developments in
various areas. Let us just mention pointers to a few papers dealing with
symmetry reduction in various contexts; the list is not exclusive. In par-
ticular, Bachoc and Vallentin [2–4] study the currently best known bounds
for spherical codes and the kissing number; Bai et al. [5] deal with truss
topology optimization; de Klerk and Sotirov [34] study lower bounds for
quadratic assignment; Gvozdenović and Laurent [47, 48] compute approx-
imations for the chromatic number of graphs; Vallentin [148] considers the
minimum distortion of embeddings of highly regular graphs in the Eu-
clidean space.
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